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Introduction. Nigel Kalton was my Ph.D. thesis advisor at the
University of Missouri-Columbia, where I arrived in 2001. My prior
studies took place at Kharkov National University, and they focused
broadly on functional analysis. I felt privileged to have the opportunity
of working with Nigel, who was a world leading expert in this area.
I became involved with the topic of functional calculus for sectorial

operators when I participated in the TULKA Internet Seminar1 during
the 2001/2002 academic year. This is an international workshop held
annually and conducted online, which is geared towards for graduate
students and postdoctoral fellows. The final event of this workshop
is a live one week meeting of all participants over the Summer. This
meeting is organized by the host institution in Europe, and in 2002 it
took place in Blaubeuren, Germany. The philosophy of the workshop
is to introduce students to a new topic and guide them along a series of
lecture notes and assignments to an active research role. The Internet
Seminar has been running each year since 1997, and it has covered a
variety of topics related to evolution equations.
The selected theme of the 2001/2002 seminar was ”Functional Cal-

culus and Differential Operators”, which was sparked by the recent
breakthrough of Kalton, Lancien, and Weis on the problem of maxi-
mal regularity. I was excited about this material, and my involvement
with the internet seminar resulted in several of my research projects.
The direction of my graduate studies including the thesis were heavily
shaped by the outcome of that academic year. The paper ”Operators
with an absolute functional calculus” [15] together with the survey
article ”Sectorial operators and interpolation theory” [16] is the culmi-
nation of my work on the subject.

1organized by the universities of Tübingen, ULm, KArlsruhe; see description of
historical and current seminars at http://www.math.kit.edu/iana3/page/isem/en
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Development of the paper. One of Nigel Kalton’s remarkable
strengths was his ability to apply deep insights and methods from clas-
sical Banach space theory to other areas. The paper under review here
is an example of a journey that Nigel took into the world of partial dif-
ferential equations and how far he was able to go. Already, his starting
point was an achievement that concluded a forty year discussion on the
outstanding Lp-maximal regularity problem.
The maximal regularity problem concerns solutions of the abstract

Cauchy problem
{

u̇(t) +Bu(t) = h(t) for t ∈ [0, T ], 0 < T ≤ ∞

u(0) = 0
(1)

where B is a closed and densely defined operator on a Banach space
X , and h : R+ −→ X is a locally integrable function.
For h ∈ Lp(X) (1 < p < ∞) it is a straightforward argument to see

that the solution u ∈ Lp(X). We say that B has Lp-maximal regularity
if it also follows that u̇ ∈ Lp(X). Although this definition apparently
depends on the value of p, it was Dore who showed in 1993 that in fact
Lp-maximal regularity for some p implies the same for every p where
1 < p < ∞ [11].
The cradle of the maximal regularity problem was a result published

by DeSimon in 1964 [10]. He established that if X is a Hilbert space
then every sectorial operator B (defined below) with angle of sectori-
ality less than π/2 has maximal regularity. A direct generalization of
this theorem from Hilbert to Banach spaces fails, and many counter
examples are known (see [8], [19]). However, the maximal regularity
property appeared to hold for all concrete examples arising from partial
differential equations on classical Lp spaces. Therefore, it was conjec-
tured by Brézis in 1980 that the result of DeSimon could be extended
to the case when X = Lp for 1 < p < ∞.
In 1999, Kalton and Lancien used Banach space techniques to show

that Hilbert spaces among Banach spaces with unconditional bases
are the only ones for which DeSimon’s result holds [17]. Therefore,
Brézis’ conjecture was found to be false. The question has now become
what conditions on a sectorial operator ensure that it has Lp-maximal
regularity.
Sectorial operators owe their name to the fact that their spectrum

is contained inside a sector of some angle 0 < φ < π. We can picture
sectorial operators in terms of their spectrum in the complex plane as
follows.
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Sp(A)

Formally, a closed operator B on X is sectorial if three properties
are satisfied:

• The domain and range of B are dense
• B is one-to-one
• ‖λ(λ−B)−1‖ ≤ C where | arg λ| > φ

We define the angle of sectoriality of B as the infimum of all angles φ
for which the above conditions hold.
The primary example of a sectorial operator is the derivative opera-

tor on Lp(R). It is not difficult to check using the exponential function
that the spectrum of a derivative operator is the imaginary axis, and
hence its sectoriality angle is π/2.
The abstract Cauchy Problem (1) can be formally written as

(A +B)u = h (2)

where A is the derivative operator (Au)(t) = u̇(t), and B is the exten-
sion of the original operator on Lp(X).
If A(A+B)−1 is a bounded operator on Lp(X) then for the solution

u we have that Au = A(A+B)−1h is in Lp(X). Thus, u̇ is in Lp(X) and
B has maximal regularity. Therefore, the maximal regularity problem
can be understood as a more general problem concerning the sum of
two sectorial commuting operators A and B. In this abstract formu-
lation, DaPrato and Grisvard demonstrated in 1975 [9] that maximal
regularity is equivalent to the following three conditions denoted by (∗)

• A+B is closed on the intersection of the respective domains
• There is a constant C > 0 such that

‖Ax‖ + ‖Bx‖ ≤ C‖Ax+Bx‖

• A+B is invertible if either A or B is invertible

The most widely known theorem in this context is due to Dore and
Venni from 1987 [13] who proved that
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(∗) holds if X is a UMD space and A,B have bounded
imaginary powers.

To apply this theorem to a maximal regularity problem we need only
to observe that when X has UMD and 1 < p < ∞ then the derivative
operator has boundary imaginary powers.
On UMD spaces the derivative operator actually has a stronger prop-

erty than bounded imaginary powers, which is H∞-calculus. Roughly
speaking, a sectorial operator A has H∞-calculus if for any bounded
analytic function f on a sector containing the spectrum of A we can
define f(A) as a bounded operator on X . The notion of H∞-calculus
for sectorial operators was introduced by McIntosh in 1986 [20]. Since
then, H∞-calculus has been established for many systems of differential
operators (e.g. parabolic differential operators, Schrödinger operators).
In UMD spaces H∞-calculus implies bounded imaginary powers.

However, since many differential operators are known to have H∞-
calculus it seems natural to impose this stronger condition on one op-
erator in (2) and a weaker condition on the other. This poses the
question: Given that A has H∞-calculus, what (weaker) conditions on
B keep the conclusion (∗) valid? There are examples which show that
simply assuming B is sectorial does not suffice. The appropriate con-
dition was discovered by Kalton and Weis in 2000 [18]. They replaced
uniform boundedness of the family {λ(λ − B)−1} in the definition of
a sectorial operator by R-boundedness. It is worth noting that the
concept of R-boundedness, which is generally stronger than uniform
boundedness, dates back to a paper on a different subject by Bour-
gain in 1983 [5]. For definition and properties of R-bounded families
of operators we refer to [4], [14], [7]. A Theorem by Kalton and Weis
connects R-boundedness to H∞-calculus by saying that

(∗) holds if A has H∞-calculus and the family of opera-
tors {λ(λ−B)−1} is R-bounded.

R-boundedness is a sharp characterization in this theorem in the sense
that we cannot go any weaker, and we do not need to be any stronger.
In the situation when one of the operators has H∞-calculus the dis-

covery of this description for the second operator was a milestone for
the theory. A downside of this condition is that in a concrete situ-
ation it is typically quite difficult to verify. We would like to drop
R-boundednes assumption for the operator B. But we need to pay the
price in the form of making stronger assumptions on A. We were look-
ing for a condition stronger than H∞-calculus (which was later termed
absolute calculus) for which the following theorem is true:
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In case A has absolute calculus then (∗) holds without
any extra assumptions on B.

We were trying to find situations where R-boundedness of the oper-
ator was not required for the regularity of the solutions to the Cauchy
problem. Two theorems due to Arendt, Batty and Bu [2, 1] pointed
us in the right direction. They are concerning the Cauchy problem (1)
with periodic boundary condition u(0) = u(T ). The first one is in the
spirit of the result of Kalton and Weis [18]:

Arendt and Bu (2002). Suppose that X is UMD and
B is a closed operator on X. The B has Lp-maximal
regularity if and only if {k(ik − B)−1 : k ∈ Z} is R-

bounded.

This theorem holds with R-boundedness replaced by uniform bound-
edness only if the underlying space X is a Hilbert space.
The situation is significantly different if we consider maximal regu-

larity with respect to Hölder spaces. We denote by Cα(X) the space of
all periodic X-valued α-Hölder continuous functions on [0, T ]. We say
that B has Cα-maximal regularity if for each h ∈ Cα(X) the solution
u of the Cauchy problem together with its derivative u̇ are contained
in Cα(X).
The second result characterizes regularity of the solutions in Cα(X)

completely in terms of the resolvents of B without any restrictions on
the Banach space X or an R-boundedness assumption.

Arendt, Batty and Bu (2004). A closed operator B has
Cα-maximal regularity if and only if {k(ik−B)−1 : k ∈
Z} is uniformly bounded.

Since R-boudnedness is not required here, the derivative operator must
have stronger properties on Hölder spaces than on Lp spaces. Similar
results have been obtained for Besov spaces.
There is another instance where properties of an operator improve

when the underlying space changes. This happens when the operator
is considered on interpolation spaces between its domain and range. A
sample result in this direction is of Dore from 1999, who proved that
any invertible sectorial operator onX hasH∞-calculus on interpolation
spaces between its domain and X [12]. To see the connection with
the theorems of Arendt, Batty and Bu, we note that for a differential
operator of some type such interpolation spaces can be identified as
Sobolev or Besov spaces.
In addition, Auscher, McIntosh and Nahmod (1997) showed that on

Hilbert spaces we can use interpolation spaces to test for H∞-calculus.
Namely, a sectorial operator has H∞-calculus on a Hilbert space if
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and only if it can be identified as an interpolation space between the
domain of the operator and the range [3]. This means that if a sectorial
operator A is ’nice’ on X (i.e. for Hilbert spaces: has H∞-calculus)
then X has to be an interpolation space between the domain and range
of A. We wish to generalize this idea to Banach spaces, but H∞-
calculus is not ’nice’ enough property to make the same conclusion. Our
goal is to characterize sectorial operators for the interpolation couple
(Ran(A),Dom(A)) or more generally (Dom(A−b),Dom(Aa)) where Aa

denotes the a-th fractional power of A.
One of the methods of constructing real interpolation spaces involves

K-functionals (see [6] for an exposition ). The principle of K-divisibility
of Brudnyi and Krugljak asserts that an intermediate space X can be
realized as an interpolation space for some couple if and only if the
corresponding K-functional satisfies the condition of K-monotonicity.
For a couple (Dom(A−b),Dom(Aa)), we find an equivalent expres-

sion for the K-functional in terms of the norm of a specific function
of the sectional operator A. Combining the principle of K-divisibility
with this description of the K-functional, we arrive at the definition
of absolute calculus. It resembles K-monotonicity but with a critical
adjustment factor. The article [16], also included in this volume, ex-
plains in depth how ideas from interpolation theory apply to the study
of sectorial operators. It elaborates on the history and value of this
approach and how the concept of absolute calculus arises.
Absolute calculus exhibits several desired properties. First of all, it

is stronger than H∞-calculus. Secondly, if A is a sectorial operator on
X and X can be realized as an interpolation space between Dom(A−b)
and Dom(Aa) then A has absolute calculus. Note that in this way we
recover the related result of Dore. Also, under a few mild assumptions
we have a converse: In case A has absolute calculus on X then X can
be identified as an interpolation space. Consequently, the results of
McIntosh, Auscher and Nahmod mentioned above can be seen as the
Hilbert space analogue. Finally, we hit one of our targets stated earlier
by showing that if A has absolute calculus then (∗) holds without any
extra assumptions on B.
In summary, our paper addresses various aspects of sectorial opera-

tors and H∞-calculus. Some of the main motivations for developing
H∞-calculus were its natural relationships with maximal regularity
of Banach space Cauchy problems and interpolation theory. We in-
troduce a new concept called absolute functional calculus, which is a
stronger property than H∞-calculus, and show its relevance and power
for Cauchy problems and interpolation.
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The paper is organized as follows. In sections three, four, and six we
give definitions, examples, preliminary results and introductory appli-
cations of absolute functional calculus to the classical theory of H∞-
calculus. We believe that these are important to understanding the
concept of absolute functional calculus. Sections two and five cover ab-
stract interpolation theory for pairs of the form (Dom(A−b),Dom(Aa)),
and the results obtained here provide an understanding of the relation-
ship between functional calculus and real interpolation theory. Our
main results demonstrate that absolute functional calculus is the ap-
propriate notion for this topic, which allows us to extend a series of
previous results. In sections seven and eight we focus on the study of
mild and strong solutions in the abstract Cauchy problem framework.
We are using the fact that certain derivative type operators on Besov
spaces have an absolute functional calculus. This allows us to general-
ize some recent work of Arendt, Batty, and Bu on first order Cauchy
problems on spaces of the form Cα(X).
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