REAL INTERPOLATION OF DOMAINS OF SECTORIAL
OPERATORS ON L,-SPACES

T. KUCHERENKO AND L. WEIS

ABSTRACT. Let A be a sectorial operator on a non-atomic Ly-space, 1 < p < oo,
whose resolvent consists of integral operators, or more generally, has a diffuse
representation. Then the fractional domain spaces D(A%) for « € (0,1) do not
coincide with the real interpolation spaces of (Lg, D(A)). As a consequence,
we obtain that no such operator A has a bounded H°-calculus if p = 1.

1. INTRODUCTION

It is not uncommon that properties of the Laplace operator extend to a sectorial
operator A which satisfies a pointwise kernel bound of the kind

(1.1) O+ @I < [ ko)l @ld, ue R
Q

for f € L, and X in a sector about Ry. Here, k) is the kernel of (A — A)™! or a
more general Poisson bound. In the case of 1 < ¢ < oo, (1.1) implies that (—A)
has maximal L,-regularity for 1 < p < oo (see e.g. [6], [9, section 5] ), or that A
has a H°-functional calculus on L, if A has one on Lo ( [4], [9, section 5]). In this
paper we exhibit two more examples of such phenomena.

It is well known that Laplace operator on L1 (R™) does not have a bounded H -
calculus. In Corollary 3.3 we show that if g=1 then (1.1) implies that A does not
have a bounded H °°-functional calculus. This is still true if k) is the kernel of any
positive integral operator on L1 (2) or if (\+A4)~! has a " diffuse representation” (see
the definition below). If (—A) generates a weakly compact semigroup this result
is already contained in [5]. It seems remarkable that the very same estimate (1.1)
that guarantees the boundedness of the H>°-calculus in so many cases if ¢ € (1, 00),
absolutely excludes it if ¢ = 1.

It is also well known that for A on Ly(R"),1 < ¢ < 00,q # 2 the fractional
domains D((1 — A)*) are isomorphic to the Bessel potential spaces W2%(R"). So
they do not coincide with the real interpolation spaces (Lg, D(A))q,» which are
isomorphic to the Besov potential spaces Bgf;(]R”) (of course, they are the same for
q=2). In Theorem 3.1 we will show that (1.1) implies such a result for any sectorial
operator A on Ly with 0 € p(4) and 1 < g < o0, ¢#2,ie.

D(A%) # (Ly, D(A))ayr, O0<a<l
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Again, it is enough that &y is the kernel of a positive integral operator on L4(€2),
or that (A + A)~! has a diffuse representation. If we assume in addition that A
has bounded imaginary powers it follows that the complex and real interpolation
methods yield different results for the interpolation pair (L,, D(A)) (see Corollary
3.2).

Let us recall now some definitions. A closed operator A with domain D(A) is
called sectorial of type w if the spectrum o(A) is contained in a sector {z € C :
larg(z)| < w} U {0} and we have |AR(X, A)|| < C,, for |arg(\)| > w. We will write
p(A) = C\o(A) for the resolvent set of A and R(A, A) for the resolvent at A € p(A).
Suppose that A is a sectorial operator of type w and f is a holomorphic function
on X, where o > w. Given that f satisfies the condition fazg |f()\)|ﬁ|d)\| < 00,
we can define

flA) = / FORMWN AN, w<d<o
s
We say that A has bounded H*® (%, )-functional calculus if the map f — f(A) can
be extended to a bounded map from the space H*>*(X,) of bounded holomorphic
functions on ¥, to the space of bounded linear operators on X (see [8] for details).

For the definition of fractional powers in terms of the H*-calculus see e.g. [9]
and if 0 € p(A) see also [11]. A sectorial operator A has bounded imaginary powers
if A= for t € R define bounded operators on X. Clearly, a bounded H>-calculus
implies bounded imaginary powers.

For the most part we consider Lg-spaces on o-finite non-atomic measure spaces
(K,B,m) and (Q, %, ). We recall that a bounded operator T on L, is positive if
the image of every non-negative function is again a non-negative function. If an
operator can be split into a difference of two positive operators then it is called
regular. Regular operators between L, spaces have a particularly useful representa-
tion (see 7, 12, 10]). Given a regular operator T : L, (K, m) — L4(, p1) there is a
family of regular Borel measures (v (x)),ecq on K such that for every f € L,(K,m)
we have

Tﬂm:iéf@»mu@ b ae.

Note that if all measures v, are absolutely continuous with respect to m then by
the Radon-Nikodym theorem we obtain classical integral operators,

w@:AmM@mmm, Ky, ) = dv, /dm

In case that all measures v, are non-atomic we say that the operator has a diffuse
representation.

While resolvents of second order elliptic operators are typically classical integral
operators, the resolvents of first order differential operators have usually a diffuse
representation. As an example, consider the operator A : D(A) D L;(R?) —
L1 (R?) given by

O far,w)

Af(ml"r?) = o1

Its resolvent

(R(A, ) f)(@1, 22) = /OOO e Mf(xy 4t x0) dt
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has representing measure
A A
/”L(ml,xg) = 77:1:1 ® 5932

where 6., is the Dirac measure and dngl = X[xhoc)(t)e’)‘(t’””l)dt. Therefore,
R(A, ) is not an integral operator but has a diffuse representation. However,
given a diffuse operator 1" we can always pass to a sub-c-algebra for which T is
integral [13].

2. PRELIMINARY RESULTS

The following lemma is a vector-valued version of a classical result about uniform
integrability in L;.

Lemma 2.1. Let X be a Banach space and T be an isomorphic embedding from
X into Lp(X) (1 < p < 00). Assume that for some subspace Y C X the set
{ITy@®)|% = y €Y, l|ylx =1} is not uniformly integrable as a subset of L.
Then there exist a sequence (y,) in'Y isomorphic to a unit vector basis of l,.

Proof. Since {||Ty(t)|% : v €Y, |ylx = 1} is not uniformly integrable in L;
we can find a sequence (y,,) in Y with ||y, || < 1 such that [ ||Ty,(t)||%dt =1 and
1Ty, ()% — 0(n — oo) almost everywhere. To see this, assume the contrary,
i.e. every sequence from T(Y') converging to zero almost everywhere is converging
to zero in Ly(X)-norm. Then for all 0 < g < p there exists C' > 0 such that
S Ty@)|Pdt < C [||Ty(t)||2dt for all y € Y . Hence, we have

lim  sup ( / Ty (8)[|? i)'/
M=o |y =1

1Ty (@)l1>M

<C Jim sup ( / I Ty(t)| diy/e

1Ty (@))1>M

< C lim sup (/ | Ty (t)||P MI~P dt)l/P -0
M=00 y||=1

This contradicts the fact that {||Ty(¢)||%x : vy €Y, |ylx =1} is not uniformly
integrable in L.

For convenience define f,(t) = |[Tyn(t)||%. Then (f,) are functions in Ly of
norm one. We will use a subsequence splitting lemma.

Lemma 2.2. [14] If (f,) is a sequence in the unit ball of Ly then there exist
a subsequence (fpn,) and disjoint sets (Ay) with their complements By, such that
fnn B, are uniformly integrable.

Since the sequence (fy, |p,) is uniformly integrable and still goes to zero almost
everywhere when k is approaching infinity we get that f,,|p, goes to zero in L;-
norm. So fy,|a, is bounded in norm from below. Now T'yn, = TYn,|B, + TYn, |4,
where || Tyn, |a,llL,(x) = [ faila,llz, is bounded from below. Thus the sequence
(T'yn, |4, ) is isomorphic to the unit vector basis of I, since it has disjoint support
and bounded from below in L,(X). On the other hand

”Tynk - Tynk‘,|AkHLp(X) = ||Tynk:‘Bk||Lp(X) = ||fnk|BkHL1 —0 (k - OO)
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It follows by perturbation of basis that some subsequence of (T'yy, ) is equivalent to
the unit vector basis of {,. Denote this subsequence again by (T'y,, ). Then (yn,)
is also equivalent to the unit vector basis of I, since 1" is an isomorphism. (]

The next proposition is related to a result in [8]. The expression appearing in

the statement will be applied to the setting of interpolation spaces between X and
D(A).

Proposition 2.3. Suppose X is a Banach space and A is a sectorial operator on
X. Assume there is a constant C > 0, 1 < p < oo and a € (0,1) such that for
every x € X

0
(2.1) C7 M|z < (/ l[t[*=1/P A% R(t, A)e||Pdt)'/? < C|]|

Then if Y is an infinite-dimensional closed subspace of D(A) (with a graph norm)
and Y does not contain a copy of l, then A is bounded on Y.

Proof. We will consider an operator T': X +— L,(R_,dt, X) given by
Tx(t) = [t|*"YPAR(t, A)x

It follows from (2.1) that T is an isomorphic embedding. Since @ < 1 we can find
a natural number m such that a < (m — 1)/m. Fix s < 0. Then R(s, A) maps
X isomorphically onto D(A) (with a graph norm). Let Yy = R(s, A)~'Y. Then
Yy is an infinite-dimensional subspace of X that does not contain a copy of I,. By
lemma 2.1 the set {||Ty(t)|[% : vy €Yy, |lyllx =1} is uniformly integrable. The
operator A*R(s, A) has a lower bound on Yj since otherwise, there would exist a
sequence y,, in Yy of elements of norm one such that || A% R(s, A)y,| — 0. However,
the resolvent equation yields for any ¢t < 0

A“R(t, A)yn = A" R(s, A)yn + (s — t)R(t, A)(A"R(s, A)yn)

Therefore ||A*R(t, A)yy,|| — 0 pointwise. Now by uniform integrability and 2.1, we
have ||y, || — 0 which gives a contradiction.

The operator A*R(s, A) is an isomorphism on Yy. Thus the subspace Y7 =
A%R(s, A)(Yy) does not contain a copy of I, and by the same argument we get
that A“R(s, A) is bounded from below on Y;. This gives us a lower bound for the
operator A2*R(s, A)? on Y. Repeating the same procedure m times we get that
the operator A™*R(s, A)™ is bounded from below on Yy by some constant C' > 0.
It follows from the boundedness of the operator A™*R(s, A)™~! (a < (m—1)/m)
and the simple computation

Cliyoll < [IA™ R(s, A)"yoll < |A™R(s, A)" || | R(s, A)yoll  wo € Yo

that the resolvent R(s, A) is bounded from below on Y.
Now we see that A is bounded on Y = R(s, A)Yy. Take any y in Y and find yq
in Yy such that y = R(s, A)yo. Then

[Ay| < [[AR(s, A llyoll
< (1/C)|[AR(s, A)|| |A™R(s, A)™ || |R(s, A)yoll
= C1llyll
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Remark 2.4. The proposition cannot be applied for p = 2. In this case X is
isomorphic to Lo(R_,dt, X). Thus there is no subspace in X and hence in D(A)
which does not contain a copy of Is.

We assume that zero is contained in the resolvent set, then (—oo,0] C p(A) and

we have an estimate ||R(¢, A)| < %\tl for all t € (—o00,0]. This allows us to apply

a theorem from [11] which yields that an equivalent norm on the real interpolation
space (X, D(A))q,p for 0 < o <1land 1<p< oo is given by

dt

2i\1/p
-

(2.2) 2l (g, D)0, & (/Ilt“A(Ath)’lxllp
0

for z € (X, D(A))a.p-
In [8] it was shown that if A has an H*-calculus on L; then

[ dt
lolly ~ [ 114°R(e )] 5.

Formula 2.2 allows us to reformulate this statement as follows.

Proposition 2.5. If A has a bounded H> -calculus on L1 (€2, i) then (L1, D(A))a1 =
D(A)* with equivalence of norms for 0 < a < 1.

3. MAIN RESULTS

In general we have the following inclusions between the domain D(A%) of a
fractional power of A and real interpolation spaces (X, D(A))q,1 and (X, D(A))a,c0

(X,D(A))a1 CD(A%) C (X, D(A))a,00-
If a sectorial operator A has a bounded H>-calculus on X = Ly (K, B, m) then we
have D(A*) = (X,D(A))q,2. This result can be found in [1]. As we will see now
this statement is wrong for L, with g # 2.

Theorem 3.1. Let A be a sectorial operator on Ly(KC,B,m) for a non-atomic
measure space (K, B,m) and 1 < q < 00,q # 2. Assume that 0 € p(A) and there
exists s < 0 such that R(s,A) is a regular operator with a diffuse representation.
Then for any o € (0,1) and 1 < p < 00

D(A%) # (Lg; D(A))ap
Proof. We will assume that D(A%) = (Ly, D(A))a,p and derive a contradiction.

It follows from [11] that there exists a constant C' > 0 such that for any y €
(Lq, D(A))q,p we have

T L dt
([ A+ 0 P < ol o,
0

dt

N\1/p
+)

<c([ leaa+ oyl
0

Since D(A%) = (Lq, D(A))a,p, we obtain for any y € D(A®) that the quantities
lA%yll, [yl pcaey, and ||y||(quD(A))mp are equivalent.
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Pick = from the range of A® and take y € D(A%) such that x = A“y. Then
oo 0

using [ [tA(A + t)"tAT | = [ |||t|*"Y/PAL-*R(t, A)x|[Pdt we obtain for
0 —o0

some suitable constant C > 0 that

0
o / I[P AV R(t, A)al|Pde)? < ] 1, ..

0
<o / I[P AT R(t, A)a|Pde)

The range of A% is dense in L, (K, B, m) and therefore condition (2.1) is fulfilled.
We will use Proposition 2.3. Since the resolvent R(s, A) is a regular operator
with a diffuse representation there is a non-atomic sub c-algebra 8B, of % such
that R(s, A)|r,(x,s,,m) is a compact operator ([12]). Let Y1 be a closed infinite-
dimensional subspace of L,(/C, 81, m) which does not contain a copy of [,, for
instance, take the span of a sequence equivalent to the Rademacher functions.
Consider Y = R(s, A)Y;. Since R(s, A) is an isomorphism from L,(IC, B, m) onto
D(A) (with the graph norm), Y is a closed infinite-dimensional subspace of D(A)
and does not contain l,. By Proposition 2.3 A is bounded on Y and therefore s/ — A
is also bounded on Y. We consider the bounded operator

T (D(A), |lll4) — Lg(K,B,m), J = R(s, A)(sI — A)

Then J(Y) =Y. On the other hand, J|y = R(s, A)(sI — A)|y = R(s,A)]y, is a
compact operator since Y1 C L4 (K, B, m). This is impossible since J is onto ¥’
and Y is infinite-dimensional. We hence obtain a contradiction. ([l

It is well known that if A has bounded imaginary powers on X then D(A%)
coincides with the complex interpolation spaces [X, D(A)]* = D(A)* (see e.g. [9]
[11]). Hence our theorem implies

Corollary 3.2. Assume in addition to the assumption of Theorem 3.1 that A has
bounded imaginary powers. Then

(Lp, D(A))ap # [Lps D(A)]a
forall1 <p<oo and o € (0,1).

Our next results will show that no reasonable differential operator on Ly (€, p)
can have a bounded H°°-calculus.

Corollary 3.3. Let A be a sectorial operator on Li(Q, 3, u). Assume there is a
point A € p(A) such that the resolvent R(\, A) has a diffuse representation. Then
A does not have a bounded H-calculus.

Proof. Combine Proposition 2.5 and Theorem 3.1 noticing that all operators on L,
are regular. ([l
For a variant of our assumption recall the Sobolev spaces defined for s € R and
1<p<Lxas
Hy = {ue S : |F {1+ )2 Fu@)}L, < oo

where F : & — &’ denotes the Fourier transform for tempered distributions (see

2], [11]).
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Corollary 3.4. Let Q@ C R™ with piecewise smooth boundary. Suppose that A :
Li1(2) D D(A) — L1(Q) is a sectorial operator such that D(A) C H; () for some
s> 0. Then A does not have an H°-calculus.

Proof. To apply Theorem 3.3 we need to show that R(A, A) has a diffuse represen-
tation for some A € p(A). Pick any A € p(A4). Then by Sobolev’s theorem we have
a continuous inclusion Hf (2) — L, (1) for some p > 1. Hence, for any bounded set
U C Q with piecewise smooth boundary we obtain that xy R(\, A) factors through
LP(U>7

Li(Q) Y EAY DAY A Ly (U) — HI(U) — Ly(U) — Ly (V).

Consequently, xpR(A, A) is a weakly compact operator. Notice that p(U) is finite.
Therefore, xyR(A, A) is an integral operator [3]. This argument works for all
bounded U C € with piecewise smooth boundary and thus R(A, A) has a diffuse
representation. According to Corollary 3.3, A does not have an H*-calculus. [
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