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A SUSPENSION FLOW OVER THE FULL SHIFT WITH
TWO DISTINCT MEASURES OF MAXIMAL ENTROPY

TAMARA KUCHERENKO AND DANIEL J. THOMPSON

Abstract. We give an explicit construction of a suspension flow
with continuous roof function over a full shift which has two distinct
measures of maximal entropy. This is a special case of our results on
measures of maximal entropy for suspension flows over the full shift
presented in Measures of maximal entropy for suspension flows
over the full shift (available at arXiv:1708.00550v1 [math.DS]).

1. Introduction

In this note, we explicitly construct a continuous roof function ρ ∶ Σ↦
(0,∞), where Σ is the full shift on four symbols, so that the suspension
flow has two measures of maximal entropy (MMEs). This contrasts with
the case of a suspension flow with Hölder continuous roof function in
which case the MME is unique [6].

While it will be no surprise to experts in this area that examples of sus-
pension flows with multiple MMEs exist for roof functions beyond Hölder
regularity, it is instructive to have concrete examples of this phenomenon.
To the best of our knowledge, no such examples appear in the literature.
Examples of suspension flows with no MME are provided in [3] and [7]
in the case when the base is non-compact or the roof function has zeroes.
In our setting, existence of at least one MME is guaranteed since we have
an expansive flow on a compact space.
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We remark that our example confirms another expected phenomenon,
discussed recently in [1]: orbit equivalence for flows does not preserve
uniqueness of the MME. To see this, note that all suspension flows over
the same base are orbit equivalent. In particular, the example here with
two MMEs is orbit equivalent to a suspension flow with constant roof
function which has a unique MME.

In our recent preprint [4], we proved the following more general result.

Theorem. Let Σ be the full shift on a finite alphabet, and let Y ⊂ Σ
be a positive entropy subshift of finite type. There exists a continuous
function ρ ∶ Σ ↦ (0,∞) so that the set of MMEs for the suspension flow
on Susp(Σ, ρ) is exactly the set of lifts to Susp(Σ, ρ) of the MMEs for the
subshift of finite type Y .

The existence of the example presented here can be deduced as an
immediate corollary of this result, and the associated construction is a
special case of the arguments in [4]. The advantage of the argument
presented in this note is that it is simpler than the one in [4], and we obtain
a shorter and more transparent proof of the non-uniqueness phenomenon.
We refer the reader to [4] for an extended bibliography of examples of non-
uniqueness of MMEs and equilibrium states in the discrete time setting.

We recall some facts about suspension flows which can be found in the
book by William Parry and Mark Pollicott [6]. Such a flow consists of
a shift space (Σ, σ) on the base, along with a continuous roof function
ρ ∶ Σ↦ (0,∞) which determines the time the flow takes to return to this
base. There is a canonical identification between the invariant probability
measures for the suspension flow and the shift map (in the base of the
flow). Moreover, we can apply Abramov’s formula to compute the entropy
of an invariant measure µ̃ for the suspension flow in terms of the entropy
of the corresponding shift invariant measure µ, i.e., hµ̃ = hµ

∫ ρdµ
.

We consider the pressure functional P ∶ C(Σ,R) ↦ R on the base
shift space. The topological pressure satisfies the well-known variational
principle, i.e., for any g ∈ C(Σ,R), we have

(1.1) P (g) = sup
µ
{hµ + ∫

Σ
g dµ} ,

where the sup is taken over all σ-invariant probability measures (see [8]
for details). The measures which realize the supremum are called the
equilibrium states for g.

Since ρ > 0, it follows from basic properties of topological pressure that
there exists a unique constant c such that P (−cρ) = 0. Now let µ be an
equilibrium state for −cρ. Then, for any other σ-invariant measure ν, we
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see that

0 = hµ + ∫ −cρdµ ≥ hν + ∫ −cρdν,

where equality holds if and only if ν is also an equilibrium state for −cρ.
Thus,

hµ

∫ ρdµ
≥ hν

∫ ρdν
,

and by Abramov’s formula, we have hµ̃ ≥ hν̃ . Therefore, any MME for
the suspension flow over (Σ, σ) with roof function ρ corresponds to an
equilibrium state for −cρ.

The preceding discussion reduces our problem to finding a continuous
function g ∶ Σ ↦ (−∞,0) such that P (g) = 0 and g has two equilibrium
states, and setting the roof function as ρ = −g. To construct such a
function g, we pick a subshift Y of Σ with two MMEs and we define g in
such a way that the MMEs for Y are the equilibrium states for g.

Our inspiration comes from the work of Franz Hofbauer [2]. He provides
an explicit example of a function on a full shift on two symbols with two
equilibrium states. However, one of them is a point mass measure, and
his function is not bounded away from zero. We construct our function
g on a full shift on four symbols, and we pick Y to be a subshift which
is the union of two disjoint copies of the full shift on two symbols, each
with its own MME. Aided by the “symmetry” of the subshift Y , which is
convenient for our estimates, we define a continuous negative function g
for which these measures are equilibrium states.

2. The Construction

We consider the (two-sided) shift space Σ on the alphabetA = {0,1,2,3},
which is the set of all bi-infinite sequences ξ = (ξn)∞n=−∞ where ξn ∈ A for
all n ∈ Z. We endow Σ with the Tychonov product topology which makes
Σ a compact metrizable space (see, e.g., [5] for details). The shift map
σ ∶ Σ → Σ defined by σ(ξ)n = ξn+1 is a continuous map on Σ. For a word
(ξ0, ..., ξn−1) ∈ An, we denote by [ξ0⋯ξn−1] = {η ∈ Σ ∶ η0 = ξ0, ..., ηn−1 =
ξn−1} the cylinder generated by (ξ0, ..., ξn−1).

The purpose of this section is to construct a continuous function g ∶
Σ↦ R with the following properties:

(1) g(ξ) ≤ − log 2 for all ξ ∈ Σ,
(2) P (g) = 0,
(3) g has more than one equilibrium state.

In view of the discussion in the previous section, the suspension flow over
(Σ, σ) with roof function ρ = −g will have more than one MME.
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We split the alphabet A = {0,1,2,3} into two subsets A0 = {0,1} and
A1 = {2,3}. For k ≥ 1, we let

(2.1) Mk = {ξ ∈ Σ ∶ ∃ i ∈ {0,1} such that ξ0, ..., ξk−1 ∈ Ai and ξk ∈ A1−i}

and M0 = {ξ ∈ Σ ∶ ∃ i ∈ {0,1} such that ξj ∈ Ai for all j}. Note that M0 is a
subshift of finite type with the transition matrix

⎛
⎜⎜⎜
⎝

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎟⎟
⎠
.

Therefore, M0 supports two MMEs µ0 and µ1 with hµ0 = hµ1 = log 2.
Consider a sequence of real numbers (ak)∞k=1 such that
● ak < − log 2 for all k ≥ 1,
● lim

k→∞
ak = − log 2,

●
∞
∑
k=1

2kea1+...+ak ≤ 1.

An example of such a sequence is given at the end of our argument. We
define g(ξ) = ak if ξ ∈Mk and g(ξ) = − log 2 if ξ ∈M0. Then g ∶ Σ → R is
continuous since lim

k→∞
ak = − log 2. Moreover, by the Variational Principle,

(2.2) P (g) ≥ hµ0 + ∫ g dµ0 = log 2 − log 2 = 0.

It remains to show that P (g) ≤ 0. By definition, P (g) = lim
k→∞

1
k
logZk(g),

where

(2.3) Zk(g) = ∑
ξ0,...,ξk−1∈A

exp sup{Skg(η) ∶ η ∈ [ξ0⋯ξk−1]},

using the notation

Skg(η) =
k−1
∑
j=0

g(σjη).

Note that g is defined “symmetrically” with respect to the two transitive
components of M0 in the sense that, on each Mk, there is a bijection
between the points with ξk ∈ A0 and the points with ξk ∈ A1. Thus, we
have

Zk(g) =
1

∑
i=0

∑
ξk−1∈Ai

ξ0,...,ξk−2∈A

exp sup{Skg(η) ∶ η ∈ [ξ0⋯ξk−1]}

= 2 ∑
ξk−1∈A0

ξ0⋯ξk−2∈A

exp sup{Skg(η) ∶ η ∈ [ξ0⋯ξk−1]}.
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For each cylinder [ξ0⋯ξk−1], either all ξj are in A0 or there exists 0 ≤ r ≤
k − 2 such that ξr ∈ A1 and ξr+1, ..., ξk−1 ∈ A0. We obtain

(2.4) Zk(g) = 2∑
ξ0,...,ξk−1∈A0

exp sup{Skg(η) ∶ η ∈ [ξ0⋯ξk−1]}

+ 2
k−2
∑
r=0

∑
ξj∈A, j<r
ξr∈A1

ξr+1⋯ξk−1∈A0

exp sup{Akg(η) ∶ η ∈ [ξ0⋯ξk−1]}.

If all the initial terms ξ0, ..., ξk−1 are inA0, then sup{Skg(η) ∶ η ∈ [ξ0⋯ξk−1]}
will be attained when ηk, ηk+1, ... are also in A0. Since, in this case,
Skg(η) = −k log 2, the first sum in (2.4) reduces to

∑
ξ0,...,ξk−1∈A0

exp(−k log 2) = 2k exp(−k log 2) = 1.

We turn our attention to the second sum. Again, “symmetry” of g
allows us to assume ξr = 2 and double the sum. We fix r > 0 and
ξ0, ..., ξr−1 ∈ A and consider

∑
ξr+1,...,ξk−1∈A0

exp sup{Skg(η) ∶ η ∈ [ξ0⋯ξr−12ξr+1⋯ξk−1]}.

For η ∈ [ξ0⋯ξr−12ξr+1⋯ξk−1],

Skg(η) = Skg(ξ0⋯ξr−12ξr+1⋯ξk−1ηkηk+1⋯)
= Sr+1g(ξ0⋯ξr−12ξr+1⋯ξk−1ηkηk+1⋯)
+ Sk−r−1g(ξr+1⋯ξk−1ηkηk+1⋯).

Notice that the value of Sr+1g(ξ0⋯ξr−12ξr+1⋯ξk−1ηkηk+1⋯) does not de-
pend on the values of ξr+1, ..., ξk−1 ∈ A0 and ηk, ηk+1, ... ∈ A. On the
other hand, the largest possible value of Sk−r−1g(ξr+1⋯ξk−1ηkηk+1⋯) is
attained when ηk, ηk+1, ... ∈ A0. In this case, Sk−r−1g(ξr+1⋯ξk−1ηkηk+1⋯) =
(k−r−1)(− log 2). Therefore, we may pick all the coordinates of η, starting
with k, to be zero and obtain

sup{Skg(η) ∶ η ∈ [ξ0⋯ξr−12ξr+1⋯ξk−1]}
= Sr+1g(ξ0⋯ξr−1200⋯) − (k − r − 1) log 2.

Similarly, when r = 0, we have

sup{Skg(η) ∶ η ∈ [2ξr+1⋯ξk−1]} = a1 − (k − 1) log 2.
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Therefore,

Zk(g) = 2 + 4∑
ξ1,...,ξk−1∈A0

exp[a1 − (k − 1) log 2]

+ 4
k−2
∑
r=1

∑
ξr+1,...,ξk−1∈A0

ξ0,...,ξr−1∈A

exp[Sr+1g(ξ0⋯ξr−1200⋯) − (k − r − 1) log 2]

= 2 + 4ea1 + 4
k−2
∑
r=1

∑
ξ0,...,ξr−1∈A

expSr+1g(ξ0⋯ξr−1200⋯).

(2.5)

To estimate the last sum, we introduce some notation. Let

Aj =∑
ξ1,...,ξj−1∈A

expSj+1g(0ξ1⋯ξj−1200⋯) for j ≥ 2 and

A1 = exp[g(0200⋯) + g(200⋯)];

Bj =∑
ξ1,...,ξj−1∈A

expSj+1g(2ξ1⋯ξj−1200⋯) for j ≥ 2 and

B1 = exp[g(2200⋯) + g(200⋯)];

Cj =∑
ξ0,ξ1,...,ξj−1∈A

expSj+1g(ξ0ξ1⋯ξj−1200⋯) for j ≥ 1.

Clearly, Cj = 2(Aj +Bj) for any j ≥ 1. First, we show that, for j ≥ 2, we
have

(2.6) Aj = 2j−1ea1ea1+...+aj +
j−1
∑
i=1

2j−iea1+...+aj−iBi.

We compute

Aj =∑
ξ1,...,ξj−1∈A

expSj+1g(0ξ1...ξj−1200...)

= 2∑
ξ2,...,ξj−1∈A

expSj+1g(02ξ2...ξj−1200...) + 2∑
ξ2,...,ξj−1∈A

expSj+1g(00ξ2...ξj−1200...)

= 2ea1∑
ξ2,...,ξj−1∈A

expSjg(2ξ2...ξj−1200...) + 2∑
ξ2,...,ξj−1∈A

expSj+1g(00ξ2...ξj−1200...)

= 2ea1Bj−1 + 2∑
ξ2,...,ξj−1∈A

expSj+1g(00ξ2...ξj−1200...)

= 2ea1Bj−1 + 22∑
ξ3,...,ξj−1∈A

expSj+1g(002ξ3...ξj−1200...)

+ 22∑
ξ3,...,ξj−1∈A

expSj+1g(000ξ3...ξj−1200...)
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= 2ea1Bj−1 + 22ea2+a1∑
ξ3,...,ξj−1∈A

expSj−1g(2ξ3...ξj−1200...)

+ 22∑
ξ3,...,ξj−1∈A

expSj+1g(000ξ3...ξj−1200...)

= 2ea1Bj−1 + 22ea2+a1Bj−2 + 22∑
ξ3,...,ξj−1∈A

expSj+1g(000ξ3...ξj200...)

= 2ea1Bj−1 + 22ea2+a1Bj−2 + ... + 2j−1eaj−1+...+a1B1

+ 2j−1 expSj+1g(00...0200...).
Continuing in this way, we obtain

Aj = 2ea1Bj−1 + 22ea2+a1Bj−2 + 23ea3+a2+a1Bj−3

+ 23∑
ξ4,...,ξj−1∈A

expSj+1g(0000ξ4...ξj200...).

= 2ea1Bj−1 + 22ea2+a1Bj−2 + ... + 2j−1eaj−1+...+a1B1 + 2j−1eaj+..+a1+a1

=
j−1
∑
i=1

2j−iea1+...+aj−iBi + 2j−1ea1ea1+...+aj .

Similarly, one can show that

(2.7) Bj = 2j−1eaj+1ea1+...+aj +
j−1
∑
i=1

2j−iea1+...+aj−iAi.

Combining (2.6) and (2.7), we obtain that, for any j ≥ 2,

(2.8) Cj = 2j(ea1 + eaj+1)ea1+...+aj +
j−1
∑
i=1

2j−iea1+...+aj−iCi.

We can also compute directly that

C1 = ∑
ξ1∈A

expS2g(ξ0200⋯)

= 2 expS2g(0200⋯) + 2 expS2g(2200⋯)
= 2e2a1 + 2ea1+a2

= 2ea1(ea1 + ea2) < 1.

Assume Ci < 1 for all i ≤ j−1. Since a1, aj+1 < − log 2 and
∞
∑
k=1

2kea1+...+ak ≤

1, we obtain that Cj must also be less than 1. Hence, by induction, Cj ≤ 1
for all j. Coming back to equation (2.5), for k ≥ 2,

Zk(g) = 2 + 4ea1 + 4
k−2
∑
j=1

Cj < 2 + 2 + 4(k − 2) = 4k − 4.

Therefore, P (g) = lim
k→∞

1
k
logZk(g) ≤ lim

k→∞
1
k
log(4k − 4) ≤ 0.
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Finally, we give an example of a sequence (ak) which satisfies the re-
quired properties. We may take ai = −(1 + c√

i
) log 2, where c ≥ 2. Then

ai < − log 2 for all i ≥ 1 and lim
i→∞

ai = − log 2. Also,

a1+...+ak = −(k + c
k

∑
i=1

1√
i
) log 2 < −(k + c

k

∑
i=1

1√
k
) log 2 ≤ −(k+c

√
k) log 2.

Using the standard integral estimate, one can show that whenever c ≥ 2,
∞
∑
k=1

2kea1+...+ak <
∞
∑
k=1

2−c
√
2 ≤ 1.
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