The Mean Value Theorem

Tamara Kucherenko
The Mean Value Theorem

Assume that f is continuous on the closed interval $[a, b]$ and differentiable on (a, b). Then there exists at least one value c in (a, b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

$f(b) - f(a)$ is the slope of the secant line.

$f'(c)$ is the slope of the tangent line.

MVT: There is at least one tangent line which is parallel to the secant line on (a, b).

Rolle's Theorem is a special case of MVT where $f(a) = f(b)$. In this case $f'(c) = 0$.

Tamara Kucherenko
Example 1

Find all the numbers c that satisfy the conclusion of the Mean Value Theorem for $f(x) = x^3 - 2x$ on the interval $[-2, 2]$.

Since f is a polynomial, it is continuous on $[-2, 2]$ and differentiable on $(-2, 2)$.

By the MVT there is a number c in $(-2, 2)$ such that $f'(c) = \frac{f(2) - f(-2)}{2 - (-2)}$.

Now $f(2) = 2^3 - 2 \cdot 2 = 4$, $f(-2) = (-2)^3 - 2 \cdot (-2) = -4$, and $f'(x) = 3x^2 - 2$.

So the equation becomes $3c^2 - 2 = \frac{4 - (-4)}{2 - (-2)} = \frac{8}{4} = 2$.

Therefore, $3c^2 - 2 = 2 \Rightarrow c^2 = \frac{4}{3} \Rightarrow c = \pm \frac{2}{\sqrt{3}}$.

Since both numbers $\frac{2}{\sqrt{3}}$ and $-\frac{2}{\sqrt{3}}$ are in $(-2, 2)$, we obtain $c = \pm \frac{2}{\sqrt{3}}$.
Example 2

Suppose that \(f(0) = 7 \) and \(f'(x) \leq 4 \) for all values of \(x \). How large can \(f(6) \) possibly be?

We are given that \(f \) is differentiable (and therefore continuous) everywhere. We apply the Mean Value Theorem on \([0, 6]\). There is a number \(c \) in the interval \((0, 6)\) such that

\[
\frac{f(6) - f(0)}{6 - 0} = f'(c)
\]

We are given that \(f'(x) \leq 4 \) for all \(x \), so in particular \(f'(c) \leq 4 \).

Since \(f(0) = -7 \), the equation gives

\[
\frac{f(6) - (-7)}{6} \leq 4 \iff f(6) + 7 \leq 24 \implies f(6) \leq 17.
\]

The largest possible value of \(f(6) \) is 17.
Example 3

Does there exist a function \(f \) such that \(f(5) = 1 \), \(f(7) = 4 \), and \(f'(x) \leq 2 \) for all \(x \)?

Since the function \(f \) is differentiable everywhere, it has to satisfy the conclusion of the MVT on the interval \([5, 7]\). There must be a point \(c \) in \((5, 7)\) such that

\[
\frac{f(7) - f(5)}{7 - 5} = f'(c)
\]

We are given that \(f'(x) \leq 2 \) for all \(x \), so in particular \(f'(c) \leq 2 \).

Since \(f(5) = 1 \), \(f(7) = 4 \), the equation gives

\[
\frac{4 - (-1)}{7 - 5} \leq 2 \quad \Rightarrow \quad \frac{5}{2} \leq 2
\]

Contradiction!

Therefore, the answer is \(\boxed{No} \), there is no function such that \(f(5) = 1 \), \(f(7) = 4 \), and \(f'(x) \leq 2 \) for all \(x \).
If $f'(x) = 0$ for all x in an interval (a, b) then f is constant on (a, b).

Let x_1 and x_2 be any two numbers in (a, b) with $x_1 < x_2$. By applying the MVT to f on the interval $[x_1, x_2]$ we get a number c in (x_1, x_2) such that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

Since $f'(x) = 0$ for all x in (a, b), we have $f'(c) = 0$ and equation becomes

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \quad \Rightarrow \quad f(x_2) - f(x_1) = 0 \quad \Rightarrow \quad f(x_2) = f(x_1)$$

Therefore f has the same value at any two numbers in (a, b). This means that f is constant on (a, b).

Tamara Kucherenko
THE END