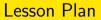
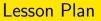
The Limit of a Function

Tamara Kucherenko

(ロ) (四) (主) (主) (主) のへで

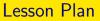


• Numerical and Graphical Investigation



- Numerical and Graphical Investigation
- Informal Definition of a Limit

◆□> ◆□> ◆注> ◆注> 三注。



- Numerical and Graphical Investigation
- Informal Definition of a Limit
- One-Sided Limits

э.

・ロト ・回ト ・ヨト ・ヨト

Lesson Plan

- Numerical and Graphical Investigation
- Informal Definition of a Limit
- One-Sided Limits
- Infinite limits

э.

・ロト ・回ト ・ヨト ・ヨト

Lesson Plan

- Numerical and Graphical Investigation
- Informal Definition of a Limit
- One-Sided Limits
- Infinite limits

э.

・ロト ・回ト ・ヨト ・ヨト

Lesson Plan

- Numerical and Graphical Investigation
- Informal Definition of a Limit
- One-Sided Limits
- Infinite limits

The limit of a function is a fundamental concept concerning the behavior of that function near a particular input.

The limit of a function is a fundamental concept concerning the behavior of that function near a particular input.

Investigate the behavior of the function $f(x) = \frac{\sin x}{x}$ for values of x near 0.

The limit of a function is a fundamental concept concerning the behavior of that function near a particular input.

Investigate the behavior of the function $f(x) = \frac{\sin x}{x}$ for values of x near 0.

The domain of f is $(-\infty, 0) \cup (0, \infty)$, f(0) is undefined.

<ロ> < 団> < 団> < 目> < 目> < 目> < 目</p>

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

A Numerical and Graphical approach

The limit of a function is a fundamental concept concerning the behavior of that function near a particular input.

Investigate the behavior of the function $f(x) = \frac{\sin x}{x}$ for values of x near 0.

The domain of f is $(-\infty, 0) \cup (0, \infty)$, f(0) is undefined.

We can compute f(x) for values of x as close to 0 as we like.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

A Numerical and Graphical approach

The limit of a function is a fundamental concept concerning the behavior of that function near a particular input.

Investigate the behavior of the function $f(x) = \frac{\sin x}{x}$ for values of x near 0.

The domain of f is $(-\infty, 0) \cup (0, \infty)$, f(0) is undefined.

We can compute f(x) for values of x as close to 0 as we like.

To indicate that x takes on values (both positive and negative) that get closer and closer to 0 we write $x \to 0$.

 $f(x) = \frac{\sin x}{x}$ for x near 0

x	$\frac{\sin x}{x}$	x	$\frac{\sin x}{x}$
-1.000	0.8414709	1.000	0.8414709
-0.500	0. 9 588510	0.500	0. 9 588510
-0.100	0. 99 83341	0.100	0. 99 83341
-0.050	0. 999 5833	0.050	0. 999 5833
-0.010	0. 9999 833	0.010	0. 9999 833
-0.005	0. 99999 58	0.005	0. 99999 58
-0.001	0. 999999 8	0.001	0. 999999 8

Tamara Kucherenko

One-Sided Limits

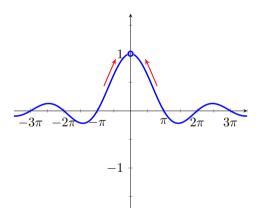
The Limit of a Function

Infinite Limits

・ロト ・四ト ・ヨト ・ヨト ・ヨー

 $f(x) = \frac{\sin x}{x}$ for x near 0

x	$\frac{\sin x}{x}$	x	$\frac{\sin x}{x}$
-1.000	0.8414709	1.000	0.8414709
-0.500	0. 9 588510	0.500	0. 9 588510
-0.100	0. 99 83341	0.100	0. 99 83341
-0.050	0. 999 5833	0.050	0. 999 5833
-0.010	0. 9999 833	0.010	0. 9999 833
-0.005	0. 99999 58	0.005	0. 99999 58
-0.001	0. 999999 8	0.001	0. 999999 8



Infinite Limits

x

x	$\frac{\sin x}{x}$	x	$\frac{\sin x}{x}$
-1.000	0.8414709	1.000	0.8414709
-0.500	0. 9 588510	0.500	0. 9 588510
-0.100	0. 99 83341	0.100	0. 99 83341
-0.050	0. 999 5833	0.050	0. 999 5833
-0.010	0. 9999 833	0.010	0. 9999 833
-0.005	0. 99999 58	0.005	0. 99999 58
-0.001	0. 999999 8	0.001	0. 999999 8

f(x) converges to 1 as x approaches zero or $\lim_{x \to 0} f(x) = 1$.

$$-3\pi - 2\pi - \pi - 1$$

$$f(x) = \frac{\sin x}{x}$$
 for x near

One-Sided Limits

Infinite Limits

<ロ> (四) (四) (三) (三) (三)

Informal Definition of a Limit

Tamara Kucherenko The Limit of a Function

One-Sided Limits

Infinite Limits

Informal Definition of a Limit

Definition

Suppose f(x) is defined for all x near the number a.

・ロト・(四)・(日)・(日)・(日)・(日)

э.

Informal Definition of a Limit

Definition

Suppose f(x) is defined for all x near the number a. We say that

$$\lim_{x \to a} f(x) = L$$

if we can make the values of f(x) as close to L as we like by taking x to be any number sufficiently close (but not equal) to a.

Informal Definition of a Limit

Definition

Suppose f(x) is defined for all x near the number a. We say that

$$\lim_{x \to a} f(x) = L$$

if we can make the values of f(x) as close to L as we like by taking x to be any number sufficiently close (but not equal) to a.

An alternative notation is $f(x) \rightarrow L$ as $x \rightarrow a$.

Informal Definition of a Limit

Definition

Suppose f(x) is defined for all x near the number a. We say that

$$\lim_{x \to a} f(x) = L$$

if we can make the values of f(x) as close to L as we like by taking x to be any number sufficiently close (but not equal) to a.

An alternative notation is $f(x) \rightarrow L$ as $x \rightarrow a$.

If the values of f(x) do not approach any number as $x \to a$, we say that $\lim_{x\to a} f(x)$ does not exist.

Informal Definition of a Limit

Definition

Suppose f(x) is defined for all x near the number a. We say that

$$\lim_{x \to a} f(x) = L$$

if we can make the values of f(x) as close to L as we like by taking x to be any number sufficiently close (but not equal) to a.

An alternative notation is $f(x) \rightarrow L$ as $x \rightarrow a$.

If the values of f(x) do not approach any number as $x \to a$, we say that $\lim_{x\to a} f(x)$ does not exist.

If f(x) approaches a limit as $x \to a$, then the limiting value L is unique.

One-Sided Limits

Infinite Limits

Example 1

Find $\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}}$.

One-Sided Limits

Infinite Limits

Example 1

Find
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}}$$
. Notice that $\frac{4-4}{\sqrt{4-2}} = \frac{0}{0}$ (undefined)

One-Sided Limits

Infinite Limits

Example 1

Find
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}}$$
. Notice that $\frac{4-4}{\sqrt{4-2}} = \frac{0}{0}$ (undefined)

x	$\frac{x-4}{\sqrt{x-2}}$	x	$\frac{x-4}{\sqrt{x-2}}$
3.90000	3.9 74841	4.10000	4.0 24845
3.99000	3.99 7498	4.01000	4.00 2498
3.99900	3.999 750	4.00100	4.000 250
3.99990	3.9999 75	4.00010	4.0000 25
3.99999	3.99999 7	4.00001	4.00000 2

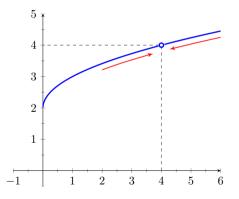
Infinite Limits

æ

Example 1

Find
$$\lim_{x
ightarrow 4}rac{x-4}{\sqrt{x-2}}$$
. Notice that $rac{4-4}{\sqrt{4-2}}=rac{0}{0}$ (undefined)

x	$\frac{x-4}{\sqrt{x-2}}$	x	$\frac{x-4}{\sqrt{x-2}}$
3.90000	3.9 74841	4.10000	4.0 24845
3.99000	3.99 7498	4.01000	4.00 2498
3.99900	3.999 750	4.00100	4.000 250
3.99990	3.9999 75	4.00010	4.0000 25
3.99999	3.99999 7	4.00001	4.00000 2



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Infinite Limits

æ

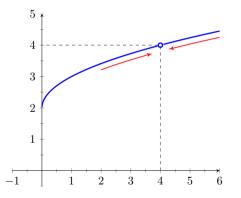
Example 1

Find
$$\lim_{x
ightarrow 4}rac{x-4}{\sqrt{x-2}}$$
. Notice that $rac{4-4}{\sqrt{4-2}}=rac{0}{0}$ (undefined)

x	$\frac{x-4}{\sqrt{x-2}}$	x	$\frac{x-4}{\sqrt{x-2}}$
3.90000	3.9 74841	4.10000	4.0 24845
3.99000	3.99 7498	4.01000	4.00 2498
3.99900	3.999 750	4.00100	4.000 250
3.99990	3.9999 75	4.00010	4.0000 25
3.99999	3.99999 7	4.00001	4.00000 2

Therefore,

$$\lim_{x \to 4} \frac{x-4}{\sqrt{x-2}} = 4.$$



・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Example 2

One-Sided Limits

Infinite Limits

Find $\lim_{x \to 3} x^2$.

Example 2

Infinite Limits

(日) (四) (王) (王) (王) (王)

Find $\lim_{x \to 3} x^2$.

x	x^2	x	x^2
2.90000	8 .410000	3.10000	9 .610000
2.99000	8.9 40100	3.01000	9.0 60100
2.99900	8.99 4001	3.00100	9.00 6001
2.99990	8.999 400	3.00010	9.000 600
2.99999	8.9999 40	3.00001	9.0000 60

,

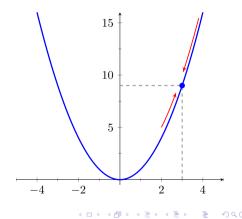
Example 2

One-Sided Limits

Infinite Limits

Find $\lim_{x \to 3} x^2$.

x	x^2	x	x^2
2.90000	8 .410000	3.10000	9 .610000
2.99000	8.9 40100	3.01000	9.0 60100
2.99900	8.99 4001	3.00100	9.00 6001
2.99990	8.999 400	3.00010	9.000 600
2.99999	8.9999 40	3.00001	9.0000 60



,

Example 2

One-Sided Limits

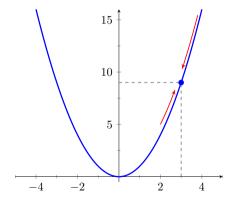
Infinite Limits

æ

Find $\lim_{x \to 3} x^2$.

x	x^2	x	x^2
2.90000	8 .410000	3.10000	9 .610000
2.99000	8.9 40100	3.01000	9.0 60100
2.99900	8.99 4001	3.00100	9.00 6001
2.99990	8.999 400	3.00010	9.000 600
2.99999	8.9999 40	3.00001	9.0000 60

Therefore,
$$\lim_{x \to 3} x^2 = 9.$$



・ロト ・回ト ・ヨト ・ヨト

,

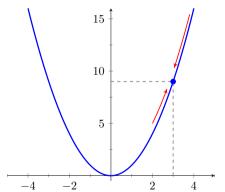
Example 2

Find $\lim_{x \to 3} x^2$.

x	x^2	x	x^2
2.90000	8 .410000	3.10000	9 .610000
2.99000	8.9 40100	3.01000	9.0 60100
2.99900	8.99 4001	3.00100	9.00 6001
2.99990	8.999 400	3.00010	9.000 600
2.99999	8.9999 40	3.00001	9.0000 60

Therefore,
$$\lim_{x \to 3} x^2 = 9.$$

Here $f(x) = x^2$ is defined at x = 3 and f(3) = 9,



・ロト ・回ト ・モト ・モト

Infinite Limits

æ

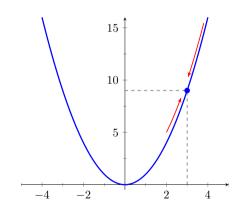
Example 2

Find $\lim_{x \to 3} x^2$.

x	x^2	x	x^2
2.90000	8 .410000	3.10000	9 .610000
2.99000	8.9 40100	3.01000	9.0 60100
2.99900	8.99 4001	3.00100	9.00 6001
2.99990	8.999 400	3.00010	9.000 600
2.99999	8.9999 40	3.00001	9.0000 60

Therefore,
$$\lim_{x \to 3} x^2 = 9.$$

Here $f(x) = x^2$ is defined at x = 3 and f(3) = 9, so the limit is equal to the function value.



Infinite Limits

э

Example 3

One-Sided Limits

Infinite Limits

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$.

Example 3

One-Sided Limits

Infinite Limits

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at x = 0.

Example 3

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at x = 0.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

Ξ.

Example 3

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at x = 0.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that $\lim_{x \to 0} \sin \frac{\pi}{x} = 0.$

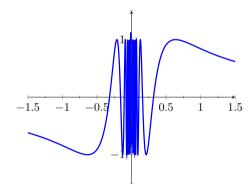
э.

Example 3

Find
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at $x = 0$.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that
$$\lim_{x \to 0} \sin \frac{\pi}{x} = 0.$$



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

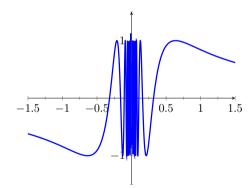
Infinite Limits

Example 3

Find
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at $x = 0$.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that $\lim_{x\to 0} \sin \frac{\pi}{x} \neq 0.$



イロト イロト イヨト イヨト

Infinite Limits

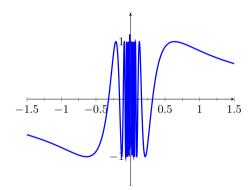
æ

Example 3

Find
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at $x = 0$.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that $\lim_{x\to 0} \frac{\pi}{x} \neq 0.$ <u>Reason:</u> $\sin \frac{\pi}{0.01} = \sin(100\pi) = 0$, since $\sin \pi n = 0.$



イロト イロト イヨト イヨト

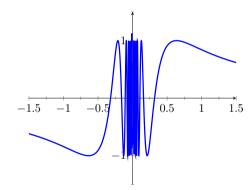
æ

Example 3

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at x = 0.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that
$$\lim_{x\to 0} \sin \frac{\pi}{x} \neq 0$$
.
Reason: $\sin \frac{\pi}{0.01} = \sin(100\pi) = 0$, since $\sin \pi n = 0$.
However, $\sin(\pi n + \frac{\pi}{2}) = \pm 1$.



・ロト ・回ト ・モト ・モト

Infinite Limits

æ

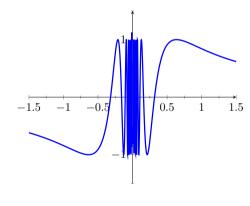
Infinite Limits

Example 3

Find
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at $x = 0$.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.10000	0.000000	0.10000	0.000000
-0.01000	0.000000	0.01000	0.000000
-0.00100	0.000000	0.00100	0.000000
-0.00010	0.000000	0.00010	0.000000
-0.00001	0.000000	0.00001	0.000000

We guess that
$$\lim_{x\to 0} \sin \frac{\pi}{x} \neq 0$$
.
Reason: $\sin \frac{\pi}{0.01} = \sin(100\pi) = 0$, since $\sin \pi n = 0$.
However, $\sin(\pi n + \frac{\pi}{2}) = \pm 1$. Solving $\pi n + \frac{\pi}{2} = \frac{\pi}{x}$ for x
with $n = 100$ gives $x = 0.00995$ and $\sin \frac{\pi}{0.00995} = 0.997$



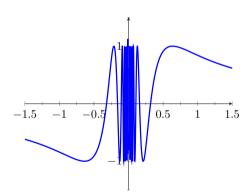
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

÷.

Example 3

Find $\lim_{x\to 0} \sin \frac{\pi}{x}$. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at x = 0.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.49990	-0.0012569	0.50000	0.0000000
-0.02090	0.4626743	0.02100	-0.9308737
-0.00985	0.9974262	0.00995	0.9999688
-0.00063	0.8119380	0.00073	-0.4171936
-0.00011	-0.2817326	0.00011	0.2817326



・ロト ・回ト ・モト ・モト

Infinite Limits

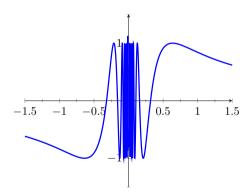
æ

Example 3

Find
$$\lim_{x\to 0} \sin \frac{\pi}{x}$$
. The function $f(x) = \sin \frac{\pi}{x}$ is not defined at $x = 0$.

x	$\sin \frac{\pi}{x}$	x	$\sin \frac{\pi}{x}$
-0.49990	-0.0012569	0.50000	0.0000000
-0.02090	0.4626743	0.02100	-0.9308737
-0.00985	0.9974262	0.00995	0.9999688
-0.00063	0.8119380	0.00073	-0.4171936
-0.00011	-0.2817326	0.00011	0.2817326

Therefore,
$$\lim_{x \to 0} \sin \frac{\pi}{x}$$
 does not exist.



・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Ξ.

Infinite Limits

One-Sided Limits

One-Sided Limits

Infinite Limits

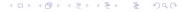
For a number a we write

• $x \to a^-$ if x approaches a from the left (through values less than a)

(ロ) (部) (主) (主) (の)

For a number a we write

- $x \to a^-$ if x approaches a from the left (through values less than a)
- $x \to a^+$ if x approaches a from the right (through values greater than a)



One-Sided Limits

For a number a we write

- $x \to a^-$ if x approaches a from the left (through values less than a)
- $x \to a^+$ if x approaches a from the right (through values greater than a)

イロト 不得 とくき とくき とうきょう

One-Sided Limits

For a number a we write

- $x \to a^-$ if x approaches a from the left (through values less than a)
- $x \to a^+$ if x approaches a from the right (through values greater than a)
- We say that $\lim_{x\to a^-} f(x) = L$ (left-hand limit) if we can make the values of f(x) as close to L as we like by taking x to be any number smaller than a and sufficiently close to a.

One-Sided Limits

For a number a we write

- $x \to a^-$ if x approaches a from the left (through values less than a)
- $x \to a^+$ if x approaches a from the right (through values greater than a)
- We say that $\lim_{x\to a^-} f(x) = L$ (left-hand limit) if we can make the values of f(x) as close to L as we like by taking x to be any number smaller than a and sufficiently close to a.

Similarly, $\lim_{x \to a^+} f(x) = L$ (right-hand limit) if we can make the values of f(x) as close to L as we like by taking x to be any number greater than a and sufficiently close to a.

イロト 不得 とくき とくき とうき

One-Sided Limits

For a number a we write

- $x \to a^-$ if x approaches a from the left (through values less than a)
- $x \to a^+$ if x approaches a from the right (through values greater than a)

We say that $\lim_{x\to a^-} f(x) = L$ (left-hand limit) if we can make the values of f(x) as close to L as we like by taking x to be any number smaller than a and sufficiently close to a.

Similarly, $\lim_{x \to a^+} f(x) = L$ (right-hand limit) if we can make the values of f(x) as close to L as we like by taking x to be any number greater than a and sufficiently close to a.

$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = L \text{ and } \lim_{x \to a^+} f(x) = L$$

Example 1

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへの

For the function

Example 1

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

1
$$\lim_{x \to 2^{-}} f(x)$$

2 $\lim_{x \to 2^{+}} f(x)$
3 $\lim_{x \to 1} f(x)$

$$\lim_{x \to 2} f(x)$$

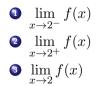
Infinite 000

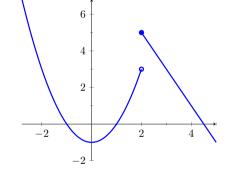
Example 1

For the function

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.





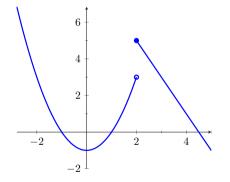
・ロト ・回ト ・モト ・モト

э

For the function

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.



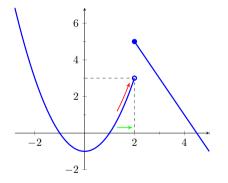
・ロト ・回ト ・モト ・モト

э

For the function

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.



・ロト ・回ト ・モト ・モト

One-Sided Limits

э

For the function

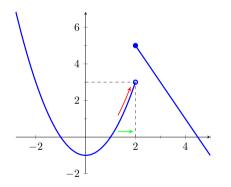
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

$$\lim_{x \to 2^{-}} f(x) = 3$$

$$\lim_{x \to 2^{+}} f(x)$$

$$\lim_{x \to 2} f(x)$$



イロト イロト イヨト イヨト

æ

Infinite Limits

æ

For the function

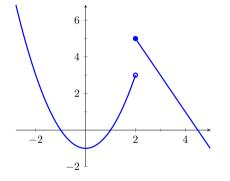
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

$$\lim_{x \to 2^{-}} f(x) = 3$$

$$\lim_{x \to 2^{+}} f(x)$$

$$\lim_{x \to 2} f(x)$$



・ロト ・回ト ・モト ・モト

æ

For the function

Example 1

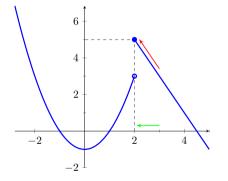
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

$$\lim_{x \to 2^{-}} f(x) = 3$$

$$\lim_{x \to 2^{+}} f(x)$$

$$\lim_{x \to 2} f(x)$$



・ロト ・回ト ・モト ・モト

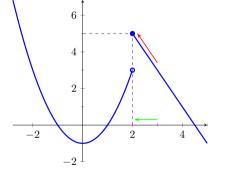
æ

For the function

Example 1

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.



・ロト ・回ト ・モト ・モト

æ

Example 1

For the function

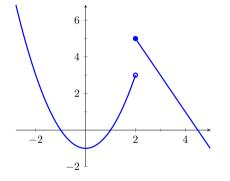
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

$$\lim_{x \to 2^{-}} f(x) = 3$$

2
$$\lim_{x \to 2^+} f(x) = 5$$

$$\lim_{x \to 2} f(x)$$



イロト イロト イヨト イヨト

э

Example 1

For the function

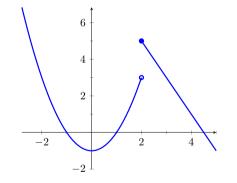
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x < 2\\ 9 - 2x & \text{if } x \ge 2 \end{cases}$$

state the value of each limit or show that it does not exist.

$$\lim_{x \to 2^-} f(x) = 3$$

2
$$\lim_{x \to 2^+} f(x) = 5$$

 $\textcircled{O} \ \lim_{x \to 2^+} f(x) \ \mathsf{DNE} \text{, since } \lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x)$



Example 2

One-Sided Limits

Infinite Limits

Example 2

Investigate
$$\lim_{x \to 0} \frac{|x|}{x}$$
.
Recall that $|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$

Tamara Kucherenko The Limit of a Function

One-Sided Limits

000000

Infinite Limits

(日) (四) (王) (王) (王)

Example 2

Investigate
$$\lim_{x\to 0} \frac{|x|}{x}$$
.
Recall that $|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$
When $x < 0$, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$.

Tamara Kucherenko The Limit of a Function

One-Sided Limits

000000

Infinite Limits

(日) (四) (王) (王) (王)

Example 2

Investigate $\lim_{x\to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$.

イロト 不得下 イヨト イヨト

э

One-Sided Limits

000000

Example 2

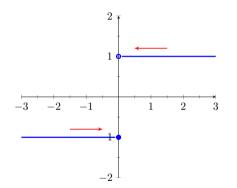
Investigate $\lim_{x \to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$. Therefore, $\frac{|x|}{x} = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x > 0 \end{cases}$ One-Sided Limits

Infinite Limits

・ キロ・ キョ・ キョ・ キョ・ ヨー つく

Example 2

Investigate $\lim_{x \to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$. Therefore, $\frac{|x|}{x} = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x > 0 \end{cases}$



(a)

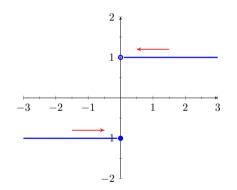
э

One-Sided Limits

000000

Example 2

Investigate $\lim_{x \to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$. Therefore, $\frac{|x|}{x} = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x > 0 \end{cases}$ $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 & \lim_{x \to 0^{+}} \frac{|x|}{x} = 1 \end{cases}$



(a)

One-Sided Limits

000000

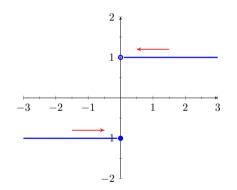
Tamara Kucherenko The Limit of a Function

Infinite Limits

э

Example 2

Investigate $\lim_{x \to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$. Therefore, $\frac{|x|}{x} = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x > 0 \end{cases}$ $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 \neq \lim_{x \to 0^{+}} \frac{|x|}{x} = 1$



(a)

Infinite Limits

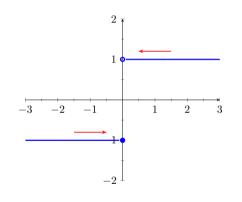
э

One-Sided Limits

000000

Example 2

Investigate $\lim_{x \to 0} \frac{|x|}{x}$. Recall that $|x| = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ When x < 0, we have $\frac{|x|}{x} = \frac{-x}{x} = -1$. When x > 0, we have $\frac{|x|}{x} = \frac{x}{x} = 1$. Therefore, $\frac{|x|}{x} = \begin{cases} -1 & \text{if } x < 0\\ 1 & \text{if } x > 0 \end{cases}$ $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 \neq \lim_{x \to 0^{+}} \frac{|x|}{x} = 1$ We conclude that $\lim_{x \to 0} \frac{|x|}{x}$ DNE.



(a)

Infinite Limits

э

One-Sided Limits

000000

Infinite Limits

One-Sided Limits

Infinite Limits

(ロ) (四) (主) (主) (主) のへで

One-Sided Limits

 $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

 $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x to be any number sufficiently close (but not equal) to a.

For example,

$$\lim_{x \to 0} \frac{1}{x^2}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

A Numerical and Graphical approach

Infinite Limits

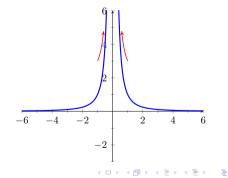
One-Sided Limits

Infinite Limits

 $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x to be any number sufficiently close (but not equal) to a.

For example,

$$\lim_{x \to 0} \frac{1}{x^2}$$



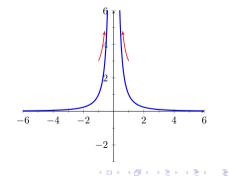
One-Sided Limits

Infinite Limits

 $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x to be any number sufficiently close (but not equal) to a.

For example,

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$



A Numerical and Graphical approach

Infinite Limits

One-Sided Limits

Infinite Limits

(ロ) (四) (主) (主) (主) (つ)(?)

One-Sided Limits

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

Example Find $\lim_{x\to 0^-} \frac{1}{x}$ and $\lim_{x\to 0^+} \frac{1}{x}$.

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

Example Find
$$\lim_{x\to 0^-} \frac{1}{x}$$
 and $\lim_{x\to 0^+} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.

ロ> < 団> < 三> < 三> < 三
 のへで

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

Example Find
$$\lim_{x\to 0^-} \frac{1}{x}$$
 and $\lim_{x\to 0^+} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

э

 $\lim_{x \to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

Example Find
$$\lim_{x\to 0^-} \frac{1}{x}$$
 and $\lim_{x\to 0^+} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

If x is a small positive number, $\frac{1}{x}$ is a large positive number.

э

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

Example Find
$$\lim_{x\to 0^-} \frac{1}{x}$$
 and $\lim_{x\to 0^+} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

If x is a small positive number, $\frac{1}{x}$ is a large positive number.

Therefore,
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$
.

э

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

Example Find
$$\lim_{x\to 0^-} \frac{1}{x}$$
 and $\lim_{x\to 0^+} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.

If x is a small positive number, $\frac{1}{x}$ is a large positive number.

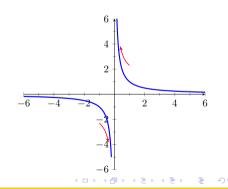
Therefore,
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$
.

 $\lim_{x \to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

Example Find
$$\lim_{x\to 0^{-}} \frac{1}{x}$$
 and $\lim_{x\to 0^{+}} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^{-}} \frac{1}{x} = -\infty$.
If x is a small positive number, $\frac{1}{x}$ is a large positive number.

Therefore,
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$
.



 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x to be any number sufficiently close (but not equal) to a.

One-Sided Limits

Example Find
$$\lim_{x\to 0^{-}} \frac{1}{x}$$
 and $\lim_{x\to 0^{+}} \frac{1}{x}$.
If x is a small negative number, $\frac{1}{x}$ is a large negative number.
Therefore, $\lim_{x\to 0^{-}} \frac{1}{x} = -\infty$.
If x is a small positive number, $\frac{1}{x}$ is a large positive number.
Therefore, $\lim_{x\to 0^{+}} \frac{1}{x} = \infty$.



Therefore,
$$\lim_{x o 0^+} rac{1}{x} = \infty.$$

However, $\lim_{x o 0} rac{1}{x}$ DNE

THE END

・ロト ・四ト ・ヨト ・ヨー うへぐ