
REAL INTERPOLATION OF DOMAINS OF SECTORIAL
OPERATORS ON Lp-SPACES

T. KUCHERENKO AND L. WEIS

Abstract. Let A be a sectorial operator on a non-atomic Lp-space, 1 ≤ p < ∞,
whose resolvent consists of integral operators, or more generally, has a diffuse
representation. Then the fractional domain spaces D(Aα) for α ∈ (0, 1) do not
coincide with the real interpolation spaces of (Lq , D(A)). As a consequence,
we obtain that no such operator A has a bounded H∞-calculus if p = 1.

1. Introduction

It is not uncommon that properties of the Laplace operator extend to a sectorial
operator A which satisfies a pointwise kernel bound of the kind

(1.1) |(λ + A)−1f(u)| ≤
∫

Ω

kλ(u, v)|f(v)|dv, u ∈ Rn

for f ∈ Lq and λ in a sector about R+. Here, kλ is the kernel of (λ − ∆)−1 or a
more general Poisson bound. In the case of 1 < q < ∞, (1.1) implies that (−A)
has maximal Lp-regularity for 1 < p < ∞ (see e.g. [6], [9, section 5] ), or that A
has a H∞-functional calculus on Lq if A has one on L2 ( [4], [9, section 5]). In this
paper we exhibit two more examples of such phenomena.

It is well known that Laplace operator on L1(Rn) does not have a bounded H∞-
calculus. In Corollary 3.3 we show that if q=1 then (1.1) implies that A does not
have a bounded H∞-functional calculus. This is still true if kλ is the kernel of any
positive integral operator on L1(Ω) or if (λ+A)−1 has a ”diffuse representation” (see
the definition below). If (−A) generates a weakly compact semigroup this result
is already contained in [5]. It seems remarkable that the very same estimate (1.1)
that guarantees the boundedness of the H∞-calculus in so many cases if q ∈ (1,∞),
absolutely excludes it if q = 1.

It is also well known that for ∆ on Lq(Rn), 1 < q < ∞, q 6= 2 the fractional
domains D((1 −∆)α) are isomorphic to the Bessel potential spaces W 2α

q (Rn). So
they do not coincide with the real interpolation spaces (Lq,D(∆))α,r which are
isomorphic to the Besov potential spaces B2α

q,r(Rn) (of course, they are the same for
q=2). In Theorem 3.1 we will show that (1.1) implies such a result for any sectorial
operator A on Lq with 0 ∈ ρ(A) and 1 < q < ∞, q 6= 2, i.e.

D(Aα) 6= (Lq,D(A))α,r, 0 < α < 1
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Again, it is enough that kλ is the kernel of a positive integral operator on Lq(Ω),
or that (λ + A)−1 has a diffuse representation. If we assume in addition that A
has bounded imaginary powers it follows that the complex and real interpolation
methods yield different results for the interpolation pair (Lq,D(A)) (see Corollary
3.2).

Let us recall now some definitions. A closed operator A with domain D(A) is
called sectorial of type ω if the spectrum σ(A) is contained in a sector {z ∈ C :
|arg(z)| < ω} ∪ {0} and we have ‖λR(λ,A)‖ ≤ Cω for |arg(λ)| > ω. We will write
ρ(A) = C\σ(A) for the resolvent set of A and R(λ,A) for the resolvent at λ ∈ ρ(A).
Suppose that A is a sectorial operator of type ω and f is a holomorphic function
on Σσ where σ > ω. Given that f satisfies the condition

∫
∂Σδ

|f(λ)| 1
|λ| |dλ| < ∞,

we can define

f(A) =
∫

∂Σδ

f(λ)R(λ, A)dλ, ω < δ < σ

We say that A has bounded H∞(Σσ)-functional calculus if the map f 7→ f(A) can
be extended to a bounded map from the space H∞(Σσ) of bounded holomorphic
functions on Σσ to the space of bounded linear operators on X (see [8] for details).

For the definition of fractional powers in terms of the H∞-calculus see e.g. [9]
and if 0 ∈ ρ(A) see also [11]. A sectorial operator A has bounded imaginary powers
if A−it for t ∈ R define bounded operators on X. Clearly, a bounded H∞-calculus
implies bounded imaginary powers.

For the most part we consider Lq-spaces on σ-finite non-atomic measure spaces
(K, B, m) and (Ω, Σ, µ). We recall that a bounded operator T on Lq is positive if
the image of every non-negative function is again a non-negative function. If an
operator can be split into a difference of two positive operators then it is called
regular. Regular operators between Lp spaces have a particularly useful representa-
tion (see [7, 12, 10]). Given a regular operator T : Lp(K,m) −→ Lq(Ω, µ) there is a
family of regular Borel measures (νy(x))y∈Ω on K such that for every f ∈ Lp(K,m)
we have

Tf(y) =
∫

K

f(x) dνy(x) µ− a.e.

Note that if all measures νy are absolutely continuous with respect to m then by
the Radon-Nikodym theorem we obtain classical integral operators,

Tf(y) =
∫

K
f(x)k(y, x) dm(x), k(y, ·) = dνy/dm

In case that all measures νy are non-atomic we say that the operator has a diffuse
representation.

While resolvents of second order elliptic operators are typically classical integral
operators, the resolvents of first order differential operators have usually a diffuse
representation. As an example, consider the operator A : D(A) ⊃ L1(R2) −→
L1(R2) given by

Af(x1, x2) =
∂

∂x1
f(x1, x2)

Its resolvent

(R(A, λ)f)(x1, x2) =
∫ ∞

0

e−λtf(x1 + t, x2) dt
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has representing measure
µλ

(x1,x2)
= ηλ

x1
⊗ δx2

where δx2 is the Dirac measure and dηλ
x1

= χ[x1,∞)(t)e−λ(t−x1)dt. Therefore,
R(A, λ) is not an integral operator but has a diffuse representation. However,
given a diffuse operator T we can always pass to a sub-σ-algebra for which T is
integral [13].

2. Preliminary results

The following lemma is a vector-valued version of a classical result about uniform
integrability in L1.

Lemma 2.1. Let X be a Banach space and T be an isomorphic embedding from
X into Lp(X) (1 ≤ p < ∞). Assume that for some subspace Y ⊂ X the set
{‖Ty(t)‖p

X : y ∈ Y, ‖y‖X = 1} is not uniformly integrable as a subset of L1.
Then there exist a sequence (yn) in Y isomorphic to a unit vector basis of lp.

Proof. Since {‖Ty(t)‖p
X : y ∈ Y, ‖y‖X = 1} is not uniformly integrable in L1

we can find a sequence (yn) in Y with ‖yn‖ ≤ 1 such that
∫ ‖Tyn(t)‖p

Xdt = 1 and
‖Tyn(t)‖p

X −→ 0 (n → ∞) almost everywhere. To see this, assume the contrary,
i.e. every sequence from T (Y ) converging to zero almost everywhere is converging
to zero in Lp(X)-norm. Then for all 0 < q < p there exists C > 0 such that∫ ‖Ty(t)‖p dt ≤ C

∫ ‖Ty(t)‖q dt for all y ∈ Y . Hence, we have

lim
M→∞

sup
‖y‖=1

(
∫

‖Ty(t)‖>M

‖Ty(t)‖p dt)1/p

≤ C lim
M→∞

sup
‖y‖=1

(
∫

‖Ty(t)‖>M

‖Ty(t)‖q dt)1/q

≤ C lim
M→∞

sup
‖y‖=1

(
∫
‖Ty(t)‖pMq−p dt)1/p = 0

This contradicts the fact that {‖Ty(t)‖p
X : y ∈ Y, ‖y‖X = 1} is not uniformly

integrable in L1.

For convenience define fn(t) = ‖Tyn(t)‖p
X . Then (fn) are functions in L1 of

norm one. We will use a subsequence splitting lemma.

Lemma 2.2. [14] If (fn) is a sequence in the unit ball of L1 then there exist
a subsequence (fnk

) and disjoint sets (Ak) with their complements Bk such that
fnk

|Bk
are uniformly integrable.

Since the sequence (fnk
|Bk

) is uniformly integrable and still goes to zero almost
everywhere when k is approaching infinity we get that fnk

|Bk
goes to zero in L1-

norm. So fnk
|Ak

is bounded in norm from below. Now Tynk
= Tynk

|Bk
+ Tynk

|Ak

where ‖Tynk
|Ak
‖Lp(X) = ‖fnk

|Ak
‖L1 is bounded from below. Thus the sequence

(Tynk
|Ak

) is isomorphic to the unit vector basis of lp since it has disjoint support
and bounded from below in Lp(X). On the other hand

‖Tynk
− Tynk

|Ak
‖Lp(X) = ‖Tynk

|Bk
‖Lp(X) = ‖fnk

|Bk
‖L1 −→ 0 (k →∞)
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It follows by perturbation of basis that some subsequence of (Tynk
) is equivalent to

the unit vector basis of lp. Denote this subsequence again by (Tynk
). Then (ynk

)
is also equivalent to the unit vector basis of lp since T is an isomorphism. ¤

The next proposition is related to a result in [8]. The expression appearing in
the statement will be applied to the setting of interpolation spaces between X and
D(A).

Proposition 2.3. Suppose X is a Banach space and A is a sectorial operator on
X. Assume there is a constant C > 0, 1 ≤ p < ∞ and α ∈ (0, 1) such that for
every x ∈ X

(2.1) C−1‖x‖ ≤ (

0∫

−∞
‖|t|α−1/pAαR(t, A)x‖pdt)1/p ≤ C‖x‖

Then if Y is an infinite-dimensional closed subspace of D(A) (with a graph norm)
and Y does not contain a copy of lp then A is bounded on Y .

Proof. We will consider an operator T : X 7→ Lp(R , dt,X) given by

Tx(t) = |t|α−1/pAαR(t, A)x

It follows from (2.1) that T is an isomorphic embedding. Since α < 1 we can find
a natural number m such that α ≤ (m − 1)/m. Fix s < 0. Then R(s, A) maps
X isomorphically onto D(A) (with a graph norm). Let Y0 = R(s,A)−1Y . Then
Y0 is an infinite-dimensional subspace of X that does not contain a copy of lp. By
lemma 2.1 the set {‖Ty(t)‖p

X : y ∈ Y0, ‖y‖X = 1} is uniformly integrable. The
operator AαR(s,A) has a lower bound on Y0 since otherwise, there would exist a
sequence yn in Y0 of elements of norm one such that ‖AαR(s,A)yn‖ → 0. However,
the resolvent equation yields for any t < 0

AαR(t, A)yn = AαR(s, A)yn + (s− t)R(t, A)(AαR(s,A)yn)

Therefore ‖AαR(t, A)yn‖ → 0 pointwise. Now by uniform integrability and 2.1, we
have ‖yn‖ → 0 which gives a contradiction.

The operator AαR(s,A) is an isomorphism on Y0. Thus the subspace Y1 =
AαR(s,A)(Y0) does not contain a copy of lp and by the same argument we get
that AαR(s,A) is bounded from below on Y1. This gives us a lower bound for the
operator A2αR(s,A)2 on Y0. Repeating the same procedure m times we get that
the operator AmαR(s, A)m is bounded from below on Y0 by some constant C > 0.
It follows from the boundedness of the operator AmαR(s,A)m−1 (α ≤ (m−1)/m)
and the simple computation

C‖y0‖ ≤ ‖AmαR(s,A)my0‖ ≤ ‖AmαR(s,A)m−1‖ ‖R(s, A)y0‖ y0 ∈ Y0

that the resolvent R(s,A) is bounded from below on Y0.
Now we see that A is bounded on Y = R(s,A)Y0. Take any y in Y and find y0

in Y0 such that y = R(s,A)y0. Then

‖Ay‖ ≤ ‖AR(s,A)‖ ‖y0‖
≤ (1/C)‖AR(s,A)‖ ‖AmαR(s,A)m−1‖ ‖R(s, A)y0‖
= C1‖y‖

¤
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Remark 2.4. The proposition cannot be applied for p = 2. In this case X is
isomorphic to L2(R , dt,X). Thus there is no subspace in X and hence in D(A)
which does not contain a copy of l2.

We assume that zero is contained in the resolvent set, then (−∞, 0] ⊂ ρ(A) and
we have an estimate ‖R(t, A)‖ ≤ C

1+|t| for all t ∈ (−∞, 0]. This allows us to apply
a theorem from [11] which yields that an equivalent norm on the real interpolation
space (X,D(A))α,p for 0 < α < 1 and 1 ≤ p ≤ ∞ is given by

(2.2) ‖x‖(Lq,D(A))α,p
≈ (

∞∫

0

‖tαA(A + t)−1x‖p dt

t
)1/p

for x ∈ (X,D(A))α,p.
In [8] it was shown that if A has an H∞-calculus on L1 then

‖x‖L1 ≈
∞∫

−∞
‖AsR(t, A)x‖ dt

t
.

Formula 2.2 allows us to reformulate this statement as follows.

Proposition 2.5. If A has a bounded H∞-calculus on L1(Ω, µ) then (L1,D(A))α,1 =
D(A)α with equivalence of norms for 0 < α < 1.

3. Main results

In general we have the following inclusions between the domain D(Aα) of a
fractional power of A and real interpolation spaces (X,D(A))α,1 and (X,D(A))α,∞

(X,D(A))α,1 ⊂ D(Aα) ⊂ (X,D(A))α,∞.

If a sectorial operator A has a bounded H∞-calculus on X = L2(K,B,m) then we
have D(Aα) = (X,D(A))α,2. This result can be found in [1]. As we will see now
this statement is wrong for Lq with q 6= 2.

Theorem 3.1. Let A be a sectorial operator on Lq(K,B,m) for a non-atomic
measure space (K, B,m) and 1 ≤ q < ∞, q 6= 2. Assume that 0 ∈ ρ(A) and there
exists s < 0 such that R(s,A) is a regular operator with a diffuse representation.
Then for any α ∈ (0, 1) and 1 ≤ p ≤ ∞

D(Aα) 6= (Lq, D(A))α,p

Proof. We will assume that D(Aα) = (Lq,D(Aα))α,p and derive a contradiction.
It follows from [11] that there exists a constant C > 0 such that for any y ∈

(Lq, D(A))α,p we have

C−1(

∞∫

0

‖tαA(A + t)−1y‖p dt

t
)1/p ≤ ‖y‖(Lq,D(A))α,p

≤ C(

∞∫

0

‖tαA(A + t)−1y‖p dt

t
)1/p

Since D(Aα) = (Lq, D(A))α,p, we obtain for any y ∈ D(Aα) that the quantities
‖Aαy‖, ‖y‖D(Aα), and ‖y‖(Lq,D(A))α,p

are equivalent.
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Pick x from the range of Aα and take y ∈ D(Aα) such that x = Aαy. Then

using
∞∫
0

‖tαA(A + t)−1A−αx‖p dt
t =

0∫
−∞

‖|t|α−1/pA1−αR(t, A)x‖pdt we obtain for

some suitable constant C > 0 that

C−1(

0∫

−∞
‖|t|α−1/pA1−αR(t, A)x‖pdt)1/p ≤ ‖x‖Lq(K,B,m)

≤ C(

0∫

−∞
‖|t|α−1/pA1−αR(t, A)x‖pdt)1/p

The range of Aα is dense in Lq(K,B,m) and therefore condition (2.1) is fulfilled.
We will use Proposition 2.3. Since the resolvent R(s,A) is a regular operator
with a diffuse representation there is a non-atomic sub σ-algebra B1 of B such
that R(s,A)|Lq(K,B1,m) is a compact operator ([12]). Let Y1 be a closed infinite-
dimensional subspace of Lq(K, B1,m) which does not contain a copy of lp, for
instance, take the span of a sequence equivalent to the Rademacher functions.
Consider Y = R(s,A)Y1. Since R(s,A) is an isomorphism from Lq(K, B, m) onto
D(A) (with the graph norm), Y is a closed infinite-dimensional subspace of D(A)
and does not contain lp. By Proposition 2.3 A is bounded on Y and therefore sI−A
is also bounded on Y . We consider the bounded operator

J : (D(A), ‖.‖A) −→ Lq(K, B,m), J = R(s,A)(sI −A)

Then J(Y ) = Y . On the other hand, J |Y = R(s,A)(sI − A)|Y = R(s,A)|Y1 is a
compact operator since Y1 ⊂ Lq(K,B1, m). This is impossible since J is onto Y
and Y is infinite-dimensional. We hence obtain a contradiction. ¤

It is well known that if A has bounded imaginary powers on X then D(Aα)
coincides with the complex interpolation spaces [X,D(A)]α = D(A)α (see e.g. [9]
[11]). Hence our theorem implies

Corollary 3.2. Assume in addition to the assumption of Theorem 3.1 that A has
bounded imaginary powers. Then

(Lp,D(A))α,p 6= [Lp,D(A)]α
for all 1 ≤ p ≤ ∞ and α ∈ (0, 1).

Our next results will show that no reasonable differential operator on L1(Ω, µ)
can have a bounded H∞-calculus.

Corollary 3.3. Let A be a sectorial operator on L1(Ω,Σ, µ). Assume there is a
point λ ∈ ρ(A) such that the resolvent R(λ,A) has a diffuse representation. Then
A does not have a bounded H∞-calculus.

Proof. Combine Proposition 2.5 and Theorem 3.1 noticing that all operators on L1

are regular. ¤
For a variant of our assumption recall the Sobolev spaces defined for s ∈ R and

1 ≤ p ≤ ∞ as

Hs
p = {u ∈ S ′ : ‖F−1{(1 + |ξ|2)s/2Fu(ξ)}‖Lp < ∞.

where F : S ′ −→ S ′ denotes the Fourier transform for tempered distributions (see
[2], [11]).
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Corollary 3.4. Let Ω ⊂ Rn with piecewise smooth boundary. Suppose that A :
L1(Ω) ⊃ D(A) −→ L1(Ω) is a sectorial operator such that D(A) ⊂ Hs

1(Ω) for some
s > 0. Then A does not have an H∞-calculus.

Proof. To apply Theorem 3.3 we need to show that R(λ,A) has a diffuse represen-
tation for some λ ∈ ρ(A). Pick any λ ∈ ρ(A). Then by Sobolev’s theorem we have
a continuous inclusion Hs

1(Ω) ↪→ Lp(Ω) for some p > 1. Hence, for any bounded set
U ⊂ Ω with piecewise smooth boundary we obtain that χUR(λ,A) factors through
Lp(U),

L1(Ω)
χU R(λ,A)−→ D(A) ∩ L1(U) ↪→ Hs

1(U) ↪→ Lp(U) ↪→ L1(U).

Consequently, χUR(λ,A) is a weakly compact operator. Notice that µ(U) is finite.
Therefore, χUR(λ,A) is an integral operator [3]. This argument works for all
bounded U ⊂ Ω with piecewise smooth boundary and thus R(λ,A) has a diffuse
representation. According to Corollary 3.3, A does not have an H∞-calculus. ¤
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