REAL INTERPOLATION OF DOMAINS OF SECTORIAL OPERATORS ON L_p -SPACES

T. KUCHERENKO AND L. WEIS

ABSTRACT. Let A be a sectorial operator on a non-atomic L_p -space, $1 \leq p < \infty$, whose resolvent consists of integral operators, or more generally, has a diffuse representation. Then the fractional domain spaces $\mathcal{D}(A^{\alpha})$ for $\alpha \in (0, 1)$ do not coincide with the real interpolation spaces of $(L_q, D(A))$. As a consequence, we obtain that no such operator A has a bounded H^{∞} -calculus if p = 1.

1. INTRODUCTION

It is not uncommon that properties of the Laplace operator extend to a sectorial operator A which satisfies a pointwise kernel bound of the kind

(1.1)
$$|(\lambda + A)^{-1} f(u)| \le \int_{\Omega} k_{\lambda}(u, v) |f(v)| dv, \quad u \in \mathbb{R}^{n}$$

for $f \in L_q$ and λ in a sector about \mathbb{R}_+ . Here, k_{λ} is the kernel of $(\lambda - \Delta)^{-1}$ or a more general Poisson bound. In the case of $1 < q < \infty$, (1.1) implies that (-A)has maximal L_p -regularity for 1 (see e.g. [6], [9, section 5]), or that <math>Ahas a H^{∞} -functional calculus on L_q if A has one on L_2 ([4], [9, section 5]). In this paper we exhibit two more examples of such phenomena.

It is well known that Laplace operator on $L_1(\mathbb{R}^n)$ does not have a bounded H^{∞} calculus. In Corollary 3.3 we show that if q=1 then (1.1) implies that A does not have a bounded H^{∞} -functional calculus. This is still true if k_{λ} is the kernel of any positive integral operator on $L_1(\Omega)$ or if $(\lambda + A)^{-1}$ has a "diffuse representation" (see the definition below). If (-A) generates a weakly compact semigroup this result is already contained in [5]. It seems remarkable that the very same estimate (1.1) that guarantees the boundedness of the H^{∞} -calculus in so many cases if $q \in (1, \infty)$, absolutely excludes it if q = 1.

It is also well known that for Δ on $L_q(\mathbb{R}^n)$, $1 < q < \infty, q \neq 2$ the fractional domains $D((1 - \Delta)^{\alpha})$ are isomorphic to the Bessel potential spaces $W_q^{2\alpha}(\mathbb{R}^n)$. So they do not coincide with the real interpolation spaces $(L_q, \mathcal{D}(\Delta))_{\alpha,r}$ which are isomorphic to the Besov potential spaces $B_{q,r}^{2\alpha}(\mathbb{R}^n)$ (of course, they are the same for q=2). In Theorem 3.1 we will show that (1.1) implies such a result for any sectorial operator A on L_q with $0 \in \rho(A)$ and $1 < q < \infty$, $q \neq 2$, i.e.

 $[\]mathcal{D}(A^{\alpha}) \neq (L_q, \mathcal{D}(A))_{\alpha, r}, \quad 0 < \alpha < 1$

¹⁹⁹¹ Mathematics Subject Classification. 46B70;47A60;47B34.

Key words and phrases. sectorial operators, real interpolation, representation of regular operators, H^{∞} -calculus.

The first author acknowledges support from DAAD scholarship 2003-2004.

The second author acknowledges support from DFG (We $2847/1\mathchar`-1).$

Again, it is enough that k_{λ} is the kernel of a positive integral operator on $L_q(\Omega)$, or that $(\lambda + A)^{-1}$ has a diffuse representation. If we assume in addition that Ahas bounded imaginary powers it follows that the complex and real interpolation methods yield different results for the interpolation pair $(L_q, \mathcal{D}(A))$ (see Corollary 3.2).

Let us recall now some definitions. A closed operator A with domain $\mathcal{D}(A)$ is called *sectorial of type* ω if the spectrum $\sigma(A)$ is contained in a sector $\{z \in \mathbb{C} : |arg(z)| < \omega\} \cup \{0\}$ and we have $\|\lambda R(\lambda, A)\| \leq C_{\omega}$ for $|arg(\lambda)| > \omega$. We will write $\rho(A) = \mathbb{C} \setminus \sigma(A)$ for the resolvent set of A and $R(\lambda, A)$ for the resolvent at $\lambda \in \rho(A)$. Suppose that A is a sectorial operator of type ω and f is a holomorphic function on Σ_{σ} where $\sigma > \omega$. Given that f satisfies the condition $\int_{\partial \Sigma_{\delta}} |f(\lambda)| \frac{1}{|\lambda|} |d\lambda| < \infty$, we can define

$$f(A) = \int_{\partial \Sigma_{\delta}} f(\lambda) R(\lambda, A) d\lambda, \quad \omega < \delta < \sigma$$

We say that A has bounded $H^{\infty}(\Sigma_{\sigma})$ -functional calculus if the map $f \mapsto f(A)$ can be extended to a bounded map from the space $H^{\infty}(\Sigma_{\sigma})$ of bounded holomorphic functions on Σ_{σ} to the space of bounded linear operators on X (see [8] for details).

For the definition of fractional powers in terms of the H^{∞} -calculus see e.g. [9] and if $0 \in \rho(A)$ see also [11]. A sectorial operator A has bounded imaginary powers if A^{-it} for $t \in \mathbb{R}$ define bounded operators on X. Clearly, a bounded H^{∞} -calculus implies bounded imaginary powers.

For the most part we consider L_q -spaces on σ -finite non-atomic measure spaces $(\mathcal{K}, \mathfrak{B}, m)$ and (Ω, Σ, μ) . We recall that a bounded operator T on L_q is *positive* if the image of every non-negative function is again a non-negative function. If an operator can be split into a difference of two positive operators then it is called *regular*. Regular operators between L_p spaces have a particularly useful representation (see [7, 12, 10]). Given a regular operator $T : L_p(K, m) \longrightarrow L_q(\Omega, \mu)$ there is a family of regular Borel measures $(\nu_y(x))_{y \in \Omega}$ on K such that for every $f \in L_p(K, m)$ we have

$$Tf(y) = \int_{K} f(x) \, d\nu_y(x) \qquad \mu - a.e.$$

Note that if all measures ν_y are absolutely continuous with respect to *m* then by the Radon-Nikodym theorem we obtain classical integral operators,

$$Tf(y) = \int_{\mathcal{K}} f(x)k(y,x) \, dm(x), \qquad k(y,\cdot) = d\nu_y/dm$$

In case that all measures ν_y are non-atomic we say that the operator has a *diffuse* representation.

While resolvents of second order elliptic operators are typically classical integral operators, the resolvents of first order differential operators have usually a diffuse representation. As an example, consider the operator $A : D(A) \supset L_1(\mathbb{R}^2) \longrightarrow L_1(\mathbb{R}^2)$ given by

$$Af(x_1, x_2) = \frac{\partial}{\partial x_1} f(x_1, x_2)$$

Its resolvent

$$(R(A,\lambda)f)(x_1,x_2) = \int_0^\infty e^{-\lambda t} f(x_1+t,x_2) \, dt$$

2

has representing measure

$$\mu_{(x_1,x_2)}^{\lambda} = \eta_{x_1}^{\lambda} \otimes \delta_{x_2}$$

where δ_{x_2} is the Dirac measure and $d\eta_{x_1}^{\lambda} = \chi_{[x_1,\infty)}(t)e^{-\lambda(t-x_1)}dt$. Therefore, $R(A,\lambda)$ is not an integral operator but has a diffuse representation. However, given a diffuse operator T we can always pass to a sub- σ -algebra for which T is integral [13].

2. Preliminary results

The following lemma is a vector-valued version of a classical result about uniform integrability in L_1 .

Lemma 2.1. Let X be a Banach space and T be an isomorphic embedding from X into $L_p(X)$ $(1 \le p < \infty)$. Assume that for some subspace $Y \subset X$ the set $\{||Ty(t)||_X^p : y \in Y, ||y||_X = 1\}$ is not uniformly integrable as a subset of L_1 . Then there exist a sequence (y_n) in Y isomorphic to a unit vector basis of l_p .

Proof. Since $\{\|Ty(t)\|_X^p: y \in Y, \|y\|_X = 1\}$ is not uniformly integrable in L_1 we can find a sequence (y_n) in Y with $\|y_n\| \leq 1$ such that $\int \|Ty_n(t)\|_X^p dt = 1$ and $\|Ty_n(t)\|_X^p \longrightarrow 0 \ (n \to \infty)$ almost everywhere. To see this, assume the contrary, i.e. every sequence from T(Y) converging to zero almost everywhere is converging to zero in $L_p(X)$ -norm. Then for all 0 < q < p there exists C > 0 such that $\int \|Ty(t)\|^p dt \leq C \int \|Ty(t)\|^q dt$ for all $y \in Y$. Hence, we have

$$\lim_{M \to \infty} \sup_{\|y\|=1} (\int_{\|Ty(t)\| > M} \|Ty(t)\|^p dt)^{1/p}$$

$$\leq C \lim_{M \to \infty} \sup_{\|y\|=1} (\int_{\|Ty(t)\| > M} \|Ty(t)\|^q dt)^{1/q}$$

$$\leq C \lim_{M \to \infty} \sup_{\|y\|=1} (\int \|Ty(t)\|^p M^{q-p} dt)^{1/p} = 0$$

This contradicts the fact that $\{\|Ty(t)\|_X^p : y \in Y, \|y\|_X = 1\}$ is not uniformly integrable in L_1 .

For convenience define $f_n(t) = ||Ty_n(t)||_X^p$. Then (f_n) are functions in L_1 of norm one. We will use a subsequence splitting lemma.

Lemma 2.2. [14] If (f_n) is a sequence in the unit ball of L_1 then there exist a subsequence (f_{n_k}) and disjoint sets (A_k) with their complements B_k such that $f_{n_k}|_{B_k}$ are uniformly integrable.

Since the sequence $(f_{n_k}|_{B_k})$ is uniformly integrable and still goes to zero almost everywhere when k is approaching infinity we get that $f_{n_k}|_{B_k}$ goes to zero in L_1 norm. So $f_{n_k}|_{A_k}$ is bounded in norm from below. Now $Ty_{n_k} = Ty_{n_k}|_{B_k} + Ty_{n_k}|_{A_k}$ where $||Ty_{n_k}|_{A_k}||_{L_p(X)} = ||f_{n_k}|_{A_k}||_{L_1}$ is bounded from below. Thus the sequence $(Ty_{n_k}|_{A_k})$ is isomorphic to the unit vector basis of l_p since it has disjoint support and bounded from below in $L_p(X)$. On the other hand

$$||Ty_{n_k} - Ty_{n_k}|_{A_k}||_{L_p(X)} = ||Ty_{n_k}|_{B_k}||_{L_p(X)} = ||f_{n_k}|_{B_k}||_{L_1} \longrightarrow 0 \quad (k \to \infty)$$

It follows by perturbation of basis that some subsequence of (Ty_{n_k}) is equivalent to the unit vector basis of l_p . Denote this subsequence again by (Ty_{n_k}) . Then (y_{n_k}) is also equivalent to the unit vector basis of l_p since T is an isomorphism. \Box

The next proposition is related to a result in [8]. The expression appearing in the statement will be applied to the setting of interpolation spaces between X and D(A).

Proposition 2.3. Suppose X is a Banach space and A is a sectorial operator on X. Assume there is a constant C > 0, $1 \le p < \infty$ and $\alpha \in (0, 1)$ such that for every $x \in X$

(2.1)
$$C^{-1} \|x\| \le \left(\int_{-\infty}^{0} \||t|^{\alpha - 1/p} A^{\alpha} R(t, A) x\|^{p} dt\right)^{1/p} \le C \|x\|$$

Then if Y is an infinite-dimensional closed subspace of D(A) (with a graph norm) and Y does not contain a copy of l_p then A is bounded on Y.

Proof. We will consider an operator $T: X \mapsto L_p(\mathbb{R}_-, dt, X)$ given by

$$Tx(t) = |t|^{\alpha - 1/p} A^{\alpha} R(t, A) x$$

It follows from (2.1) that T is an isomorphic embedding. Since $\alpha < 1$ we can find a natural number m such that $\alpha \leq (m-1)/m$. Fix s < 0. Then R(s, A) maps X isomorphically onto D(A) (with a graph norm). Let $Y_0 = R(s, A)^{-1}Y$. Then Y_0 is an infinite-dimensional subspace of X that does not contain a copy of l_p . By lemma 2.1 the set $\{||Ty(t)||_X^p : y \in Y_0, ||y||_X = 1\}$ is uniformly integrable. The operator $A^{\alpha}R(s, A)$ has a lower bound on Y_0 since otherwise, there would exist a sequence y_n in Y_0 of elements of norm one such that $||A^{\alpha}R(s, A)y_n|| \to 0$. However, the resolvent equation yields for any t < 0

$$A^{\alpha}R(t,A)y_n = A^{\alpha}R(s,A)y_n + (s-t)R(t,A)(A^{\alpha}R(s,A)y_n)$$

Therefore $||A^{\alpha}R(t, A)y_n|| \to 0$ pointwise. Now by uniform integrability and 2.1, we have $||y_n|| \to 0$ which gives a contradiction.

The operator $A^{\alpha}R(s, A)$ is an isomorphism on Y_0 . Thus the subspace $Y_1 = A^{\alpha}R(s, A)(Y_0)$ does not contain a copy of l_p and by the same argument we get that $A^{\alpha}R(s, A)$ is bounded from below on Y_1 . This gives us a lower bound for the operator $A^{2\alpha}R(s, A)^2$ on Y_0 . Repeating the same procedure m times we get that the operator $A^{m\alpha}R(s, A)^m$ is bounded from below on Y_0 by some constant C > 0. It follows from the boundedness of the operator $A^{m\alpha}R(s, A)^{m-1}$ ($\alpha \leq (m-1)/m$) and the simple computation

$$C||y_0|| \le ||A^{m\alpha}R(s,A)^m y_0|| \le ||A^{m\alpha}R(s,A)^{m-1}|| ||R(s,A)y_0|| \quad y_0 \in Y_0$$

that the resolvent R(s, A) is bounded from below on Y_0 .

Now we see that A is bounded on $Y = R(s, A)Y_0$. Take any y in Y and find y_0 in Y_0 such that $y = R(s, A)y_0$. Then

$$||Ay|| \le ||AR(s, A)|| ||y_0||$$

$$\le (1/C)||AR(s, A)|| ||A^{m\alpha}R(s, A)^{m-1}|| ||R(s, A)y_0||$$

$$= C_1||y||$$

4

Remark 2.4. The proposition cannot be applied for p = 2. In this case X is isomorphic to $L_2(\mathbb{R}_-, dt, X)$. Thus there is no subspace in X and hence in $\mathcal{D}(A)$ which does not contain a copy of l_2 .

We assume that zero is contained in the resolvent set, then $(-\infty, 0] \subset \rho(A)$ and we have an estimate $||R(t, A)|| \leq \frac{C}{1+|t|}$ for all $t \in (-\infty, 0]$. This allows us to apply a theorem from [11] which yields that an equivalent norm on the real interpolation space $(X, \mathcal{D}(A))_{\alpha, p}$ for $0 < \alpha < 1$ and $1 \leq p \leq \infty$ is given by

(2.2)
$$\|x\|_{(L_q,D(A))_{\alpha,p}} \approx (\int_0^\infty \|t^\alpha A(A+t)^{-1}x\|^p \frac{dt}{t})^{1/p}$$

for $x \in (X, \mathcal{D}(A))_{\alpha, p}$.

In [8] it was shown that if A has an H^{∞} -calculus on L_1 then

$$\|x\|_{L_1} \approx \int_{-\infty}^{\infty} \|A^s R(t, A)x\| \frac{dt}{t}.$$

Formula 2.2 allows us to reformulate this statement as follows.

Proposition 2.5. If A has a bounded H^{∞} -calculus on $L_1(\Omega, \mu)$ then $(L_1, \mathcal{D}(A))_{\alpha,1} = \mathcal{D}(A)^{\alpha}$ with equivalence of norms for $0 < \alpha < 1$.

3. Main results

In general we have the following inclusions between the domain $\mathcal{D}(A^{\alpha})$ of a fractional power of A and real interpolation spaces $(X, \mathcal{D}(A))_{\alpha,1}$ and $(X, \mathcal{D}(A))_{\alpha,\infty}$

$$(X, \mathcal{D}(A))_{\alpha, 1} \subset \mathcal{D}(A^{\alpha}) \subset (X, \mathcal{D}(A))_{\alpha, \infty}.$$

If a sectorial operator A has a bounded H^{∞} -calculus on $X = L_2(\mathcal{K}, \mathfrak{B}, m)$ then we have $\mathcal{D}(A^{\alpha}) = (X, \mathcal{D}(A))_{\alpha, 2}$. This result can be found in [1]. As we will see now this statement is wrong for L_q with $q \neq 2$.

Theorem 3.1. Let A be a sectorial operator on $L_q(\mathcal{K}, \mathfrak{B}, m)$ for a non-atomic measure space $(\mathcal{K}, \mathfrak{B}, m)$ and $1 \leq q < \infty, q \neq 2$. Assume that $0 \in \rho(A)$ and there exists s < 0 such that R(s, A) is a regular operator with a diffuse representation. Then for any $\alpha \in (0, 1)$ and $1 \leq p \leq \infty$

$$D(A^{\alpha}) \neq (L_q, D(A))_{\alpha, \eta}$$

Proof. We will assume that $\mathcal{D}(A^{\alpha}) = (L_q, \mathcal{D}(A^{\alpha}))_{\alpha, p}$ and derive a contradiction.

It follows from [11] that there exists a constant C > 0 such that for any $y \in (L_q, D(A))_{\alpha, p}$ we have

$$C^{-1} \left(\int_{0}^{\infty} \|t^{\alpha} A(A+t)^{-1} y\|^{p} \frac{dt}{t} \right)^{1/p} \leq \|y\|_{(L_{q}, D(A))_{\alpha, p}}$$
$$\leq C \left(\int_{0}^{\infty} \|t^{\alpha} A(A+t)^{-1} y\|^{p} \frac{dt}{t} \right)^{1/p}$$

Since $D(A^{\alpha}) = (L_q, D(A))_{\alpha, p}$, we obtain for any $y \in D(A^{\alpha})$ that the quantities $||A^{\alpha}y||$, $||y||_{D(A^{\alpha})}$, and $||y||_{(L_q, D(A))_{\alpha, p}}$ are equivalent.

Pick x from the range of A^{α} and take $y \in \mathcal{D}(A^{\alpha})$ such that $x = A^{\alpha}y$. Then using $\int_{0}^{\infty} ||t^{\alpha}A(A+t)^{-1}A^{-\alpha}x||^{p}\frac{dt}{t} = \int_{-\infty}^{0} |||t|^{\alpha-1/p}A^{1-\alpha}R(t,A)x||^{p}dt$ we obtain for some suitable constant C > 0 that

$$C^{-1} \left(\int_{-\infty}^{0} \| |t|^{\alpha - 1/p} A^{1 - \alpha} R(t, A) x \|^{p} dt \right)^{1/p} \leq \| x \|_{L_{q}(\mathcal{K}, \mathfrak{B}, m)}$$
$$\leq C \left(\int_{-\infty}^{0} \| |t|^{\alpha - 1/p} A^{1 - \alpha} R(t, A) x \|^{p} dt \right)^{1/p}$$

The range of A^{α} is dense in $L_q(\mathcal{K}, \mathfrak{B}, m)$ and therefore condition (2.1) is fulfilled. We will use Proposition 2.3. Since the resolvent R(s, A) is a regular operator with a diffuse representation there is a non-atomic sub σ -algebra \mathfrak{B}_1 of \mathfrak{B} such that $R(s, A)|_{L_q(\mathcal{K},\mathfrak{B}_1,m)}$ is a compact operator ([12]). Let Y_1 be a closed infinitedimensional subspace of $L_q(\mathcal{K},\mathfrak{B}_1,m)$ which does not contain a copy of l_p , for instance, take the span of a sequence equivalent to the Rademacher functions. Consider $Y = R(s, A)Y_1$. Since R(s, A) is an isomorphism from $L_q(\mathcal{K},\mathfrak{B},m)$ onto D(A) (with the graph norm), Y is a closed infinite-dimensional subspace of D(A)and does not contain l_p . By Proposition 2.3 A is bounded on Y and therefore sI - Ais also bounded on Y. We consider the bounded operator

$$J: (D(A), \|.\|_A) \longrightarrow L_a(\mathcal{K}, \mathfrak{B}, m), \quad J = R(s, A)(sI - A)$$

Then J(Y) = Y. On the other hand, $J|_Y = R(s, A)(sI - A)|_Y = R(s, A)|_{Y_1}$ is a compact operator since $Y_1 \subset L_q(\mathcal{K}, \mathfrak{B}_1, m)$. This is impossible since J is onto Y and Y is infinite-dimensional. We hence obtain a contradiction. \Box

It is well known that if A has bounded imaginary powers on X then $\mathcal{D}(A^{\alpha})$ coincides with the complex interpolation spaces $[X, \mathcal{D}(A)]^{\alpha} = \mathcal{D}(A)^{\alpha}$ (see e.g. [9] [11]). Hence our theorem implies

Corollary 3.2. Assume in addition to the assumption of Theorem 3.1 that A has bounded imaginary powers. Then

$$(L_p, \mathcal{D}(A))_{\alpha, p} \neq [L_p, \mathcal{D}(A)]_{\alpha}$$

for all $1 \le p \le \infty$ and $\alpha \in (0, 1)$.

Our next results will show that no reasonable differential operator on $L_1(\Omega, \mu)$ can have a bounded H^{∞} -calculus.

Corollary 3.3. Let A be a sectorial operator on $L_1(\Omega, \Sigma, \mu)$. Assume there is a point $\lambda \in \rho(A)$ such that the resolvent $R(\lambda, A)$ has a diffuse representation. Then A does not have a bounded H^{∞} -calculus.

Proof. Combine Proposition 2.5 and Theorem 3.1 noticing that all operators on L_1 are regular.

For a variant of our assumption recall the Sobolev spaces defined for $s\in\mathbb{R}$ and $1\leq p\leq\infty$ as

$$H_p^s = \{ u \in \mathcal{S}' : \|\mathcal{F}^{-1}\{(1+|\xi|^2)^{s/2}\mathcal{F}u(\xi)\}\|_{L_p} < \infty$$

where $\mathcal{F}: \mathcal{S}' \longrightarrow \mathcal{S}'$ denotes the Fourier transform for tempered distributions (see [2], [11]).

Corollary 3.4. Let $\Omega \subset \mathbb{R}^n$ with piecewise smooth boundary. Suppose that $A : L_1(\Omega) \supset \mathcal{D}(A) \longrightarrow L_1(\Omega)$ is a sectorial operator such that $\mathcal{D}(A) \subset H_1^s(\Omega)$ for some s > 0. Then A does not have an H^{∞} -calculus.

Proof. To apply Theorem 3.3 we need to show that $R(\lambda, A)$ has a diffuse representation for some $\lambda \in \rho(A)$. Pick any $\lambda \in \rho(A)$. Then by Sobolev's theorem we have a continuous inclusion $H_1^s(\Omega) \hookrightarrow L_p(\Omega)$ for some p > 1. Hence, for any bounded set $U \subset \Omega$ with piecewise smooth boundary we obtain that $\chi_U R(\lambda, A)$ factors through $L_p(U)$,

$$L_1(\Omega) \xrightarrow{\chi_U R(\lambda, A)} \mathcal{D}(A) \cap L_1(U) \hookrightarrow H_1^s(U) \hookrightarrow L_p(U) \hookrightarrow L_1(U).$$

Consequently, $\chi_U R(\lambda, A)$ is a weakly compact operator. Notice that $\mu(U)$ is finite. Therefore, $\chi_U R(\lambda, A)$ is an integral operator [3]. This argument works for all bounded $U \subset \Omega$ with piecewise smooth boundary and thus $R(\lambda, A)$ has a diffuse representation. According to Corollary 3.3, A does not have an H^{∞} -calculus. \Box

References

- P. Auscher, A. McIntosh and A. Nahmod, Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J. 46 (1997), 375–403.
- [2] J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag (1976).
- [3] J. Diestel and J. J. Uhl, Vector measures, Mathematical Surveys 15 (1977), 59-96.
- [4] X. T. Duong and D. W. Robertson, Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Analysis 142 (1996), 89-128.
- [5] M. Hoffmann, N. Kalton and T. Kucherenko, R-bounded approximating sequences and applications to semigroups, J. Math. Anal. Appl. 294 (2004), 373–386.
- [6] M. Hiber, J. Prüss, Heat kernels and maximal $L^p L^q$ estimates for parabolic evolution equations. Comm. Partial Differential Equations **22** (1997), 1647-1669.
- [7] N. Kalton, The endomorphisms of $L_p(0 \le p \le 1)$, Indiana Univ. Math. J. **27** (1978), 353–381.
- [8] N. Kalton and L. Weis, The H[∞]-calculus and sums of closed operators, Math. Ann. 321 (2001), 319–345.
- [9] P. Kunstman and L. Weis, Maximal L_p-regularity for parabolic equations, Fourier multiplier theorems and H[∞]-functional calculus, to appear in: Functional Analytic Methods for Evolution Equations, M. Iannelli, R. Nagel and S. Piazzere, ed., Springer Lecture Notes (2004).
- [10] A. R. Sourour, Pseudo-integral operators, Trans. Amer. Math. Soc **253** (1979), 339–363.
- [11] H. Triebel, Interpolation theory, function spaces, differential operators (1995), 91-107.
- [12] L. Weis, On the representation of order continuous operators by random measures, Trans. Amer. Math. Soc. 285 (1984), 535–563.
- [13] L. Weis, A note on diffuse random measures. Z. Wahrsch. Verw. Gebiete, 65 (1983), 239–244.
 [14] Handbook of the geometry of Banach spaces. Vol. 1, Edited by W. B. Johnson and J. Lin-
- denstrauss. North-Holland Publishing Co., Amsterdam (2001), 125-160.

Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA

 $E\text{-}mail\ address: \texttt{tamaraQmath.missouri.edu}$

Mathematisches Institut I, Universität Karlsruhe, 76128 Karlsruhe, Germany E-mail address: weis@math.uni-karlsruhe.edu