
LOCALIZED VARIATIONAL PRINCIPLE FOR

NON-BESICOVITCH METRIC SPACES

TAMARA KUCHERENKO

Abstract. We consider the localized entropy of a point w ∈ Rm which
is computed by considering only those (n, ε)-separated sets whose statis-
tical sums with respect to an m-dimensional potential Φ are ”close” to
a given value w. Previously, a local version of the variational principle
was established for systems on non-Besicovitch compact metric spaces.
We extend this result to all compact metric spaces.

1. Introduction

1.1. Motivation. Topological entropy characterizes the complexity of dy-
namical systems. It describes the exponential growth rate of the number of
distinguishable orbits as time advances. A related property is the measure-
theoretic entropy of an invariant probability measure µ. Roughly speaking,
it measures the entropy of the system if sets of µ-measure zero are ignored.

The most important characterization of topological entropy in terms of
measure-theoretic entropy is the variational principle, which asserts that
topological entropy equals the supremum of the measure-theoretic entropies
over all invariant Borel probability measures.

For each point in a rotation set we can associate local versions of the
measure-theoretic and the topological entropies. The measure-theoretic en-
tropy in this context has been studied extensively by Geller and Misiurewicz
in [5] as well as by Jenkinson in [6]. On the other hand, the localized topo-
logical entropy was only recently introduced in [8]. We arrived at a result
that can be understood as a localized variational principle with the localiza-
tion arising from only using measures having rotation vectors close to the
local focus point.

One assumption required from the metric space for the localized vari-
ational principle to work was the Besicovitch Covering Property (see e.g.
[2, 10]). It was not clear whether this property is essential or just an artifact
of the proof. Here we show that the later is true.

We say that a metric space (X, d) satisfies the Besicovitch Covering Prop-
erty if there exists an integer N so that for each family B of closed balls,
whose centers form a bounded subset of X, there is a subfamily F covering
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the set of centers of the balls in B, and such that each point of X is contained
in at most N balls from F . A large variety of dynamical systems satisfies
this property. Some examples are subshifts of finite type, hyperbolic sys-
tems and continuous maps on compact smooth Riemannian manifolds (see
[2, 10]).

Whether or not a metric space satisfies the Besicovitch Covering Property
hinges on the metric it is endowed with. For example, any uncountable com-
plete separable metric space can be re-metricised with a bilipschitz equiva-
lent metric so that the Besicovitch Covering Property is not satisfied [12].
One source of examples of spaces without the Besicovitch Covering Property
are Heisenberg groups with Korányi distance [7, 15] or Carnot-Carathéodory
distance [14], which are geometrically sub-Riemannian manifolds. It is still
not clear whether for these spaces there exist equivalent metrics for which
the Besicovitch Covering Property holds.

In [8] we prove a local version of the variational principle for compact
metric spaces which satisfy the Besicovitch Covering Property. The aim of
this note is to extend this result to all compact metric spaces.

1.2. Basic definitions and statement of the results. Let f : X → X
be a continuous map on a compact metric space (X, d). We consider a
continuous potential Φ = (φ1, · · · , φm) : X → Rm. We denote by M(f)
the set of all Borel f -invariant probability measures on X endowed with the
weak∗ topology. Following [6], we define the generalized rotation set of Φ by

Rot(Φ) = {rvΦ(µ) : µ ∈M} ,
where rvΦ(µ) =

(∫
φ1 dµ, . . . ,

∫
φm dµ

)
denotes the rotation vector of the

measure µ. We call MΦ(w) = {µ ∈ M : rvΦ(µ) = w} the rotation class of
w. We refer to [6, 8, 17] for further details about rotation sets.

For w ∈ Rot(Φ), we define the localized measure-theoretic entropy at w
(with respect to Φ and f) by

hm(w, f,Φ) = sup {hµ(f) : µ ∈MΦ(w)} .
Alternatively, we can adopt Bowen-Dinaburg approach to define localized

topological entropy. For n ∈ N and ε > 0, we say that a set F ⊂ X

is (n, ε)-separated if for all x, y ∈ F with x 6= y we have dn(x, y)
def
=

maxk=0,··· ,n−1 d(fk(x), fk(y)) ≥ ε. Note that dn is a metric (called Bowen
metric) that induces the same topology on X as d. For x ∈ X and n ∈ N, we
denote by 1

nSn(Φ, f)(x) the m-dimensional Birkhoff average at x of length n
with respect to Φ and f , where Sn(Φ, f)(x) = (Sn(φ1, f)(x), . . . , Sn(φm, f)(x))
and

Sn(φi, f)(x) =
n−1∑
k=0

φi(f
k(x)).

Given w ∈ Rm and r > 0 we say a set F ⊂ X is a (n, ε, r, w)-set for Φ
and f if F is (n, ε)-separated set and for all x ∈ F the Birkhoff average
1
nSn(Φ, f)(x) is contained in the open Euclidean ball B(w, r) with center w
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and radius r. For all n ∈ N and ε, r > 0 we pick a maximal (with respect to
the inclusion) (n, ε, r, w)-set Fn(ε, r, w).

Then the localized topological entropy at w ∈ Rm (with respect to Φ and
f) is defined by

htop(w,Φ, f) = lim
r→0

lim
ε→0

lim sup
n→∞

1

n
log card Fn(ε, r, w) (1)

This definition is analogous to that of the classical topological entropy with
the exception that we here only consider orbits with Birkhoff averages close
to w. As in the case of the classical topological entropy, this definition is
independent of the choice of the sets Fn(ε, r, w).

Note that the definition of htop(w,Φ, f) is only meaningful if B(w, r)
contains statistical averages for infinitely many n and arbitrarily small r. In
case a point w ∈ Rm satisfies this property then it must be contained in the
rotation set Rot(Φ). However, this is not sufficient, see [8] for the precise
condition. Here we are only interested in those points of the rotation set
which can be approximated by rotation vectors of ergodic measures. For
such points the localized topological entropy is well defined.

The classical variational principle (without localization) states that the
topological and the measure-theoretic versions of the entropy coincide. How-
ever, it turns out that in the case of localized entropy the measure-theoretic
and topological entropies may differ, and strict inequalities can occur in
both directions [9]. On the other hand, the following result gives a fairly
complete description of the assumptions needed to still have a variational
principle.

Localized Variational Principle. [8] Let f : X → X be a continuous
map on a compact metric space X which satisfies the Besicovitch Covering
Property. Let Φ : X → Rm be continuous and let w ∈ Rot(Φ) be such that
the map v 7→ hm(v, f,Φ) is continuous at w and hm(w, f,Φ) is approximated
by ergodic measures. Then

htop(w, f,Φ) = hm(w, f,Φ).

Here, we say that hm(w, f,Φ) is approximated by ergodic measures if there
exists a sequence of ergodic measurs (µn)n∈N such that rvΦ(µn) → w and
hµn(f) → hm(w, f,Φ) as n → ∞. The assumption that hm(f,Φ, w) is
approximated by ergodic measures cannot be dropped in the previous the-
orem. Indeed, there are examples which do not satisfy this assumption and
htop(w, f,Φ) < hm(w, f,Φ) holds. On the other hand, without the assump-
tion that v 7→ hm(v, f,Φ) is continuous at w, we arrive at the opposite
inequality [9]. We recall that the continuity of v 7→ hm(f,Φ, v) holds for
all points w if the entropy map µ 7→ hµ(f) is upper semi-continuous. In
particular, this is true if f is expansive [1], a C∞ map on a compact smooth
Riemannian manifold [11], or satisfies the entropy-expansiveness [4].

All conditions except the Besicovitch property are necessary for the con-
clusion of this theorem. However, the Besicovitch property appears to be
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nonessential. Moreover, the inequality htop(w, f,Φ) ≤ hm(w, f,Φ) is proven
in [8] without any additional assumptions on the metric space X. Here we
present an alternate proof of the opposite inequality that does not rely on
the Besicovitch property.

A paper by Feng De-Jun and Huang Wen [3] discusses variational princi-
ple for topological entropies of compact, but not necessarily invariant subsets
of X. To obtain their result the authors have to consider a broader range
of Borel probability measures than f -invariant measures. The difference be-
tween their approach and what is presented here brings about an interesting
problem. For a fixed point w ∈ Rot(Φ) we may consider a set of points
in X whose Birkhoff averages with respect to Φ are getting in a suitable
sense close to w. In case the set arising in this context is compact, we can
determine whether its topological entropies considered in [3] coincide with
htop(w, f,Φ).

2. Localized Variational Principle for Entropy

This section is devoted to the proof of the following theorem.

Theorem 1. Let f : X → X be a continuous map on a compact metric
space X. Let Φ : X → Rm be continuous and let w ∈ Rot(Φ) be such that
the map v 7→ hm(v, f,Φ) is continuous at w and hm(w, f,Φ) is approximated
by ergodic measures. Then htop(w, f,Φ) = hm(w, f,Φ).

Note that the inequality htop(w, f,Φ) ≤ hm(w, f,Φ) was proven in [8].
The proof of the opposite inequality hm(w, f,Φ) ≤ htop(w, f,Φ) relies on
the following three lemmas.

We fix w ∈ Rot(Φ) and r > 0. We denote by

h(r, w,Φ, f) = lim
ε→0

lim sup
n→∞

1

n
log card Fn(ε, r, w) (2)

Here Fn(ε, r, w) stands for a maximal (n, ε, w, r)-set. Then the localized
topological entropy at w (with respect to f and Φ) is

htop(w, f,Φ) = lim
r→0

h(r, w, f,Φ) (3)

Lemma 1. Let X be a metric space, f : X → X and Φ : X → Rm. For
k ∈ N denote by Φk = 1

kSk(Φ, f). Then for any n ∈ N we have

1

n
Sn(Φk, f

k) =
1

kn
Skn(Φ, f)

The equality in this lemma is proved by standard algebraic manipulation
and thus we omit it here.

Lemma 2. Let f : X → X be a continuous map on a compact metric space,
Φ : X → Rm be a continuous potential and w ∈ Rot(Φ). For any r > 0 and
k ∈ N we have

h(r, w, fk,Φk) = k · h(r, w, f,Φ),

where Φk = 1
kSk(Φ, f).
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Proof. For an ε > 0 let F be any (n, ε, r, w)-set with respect to Φk and fk.
We will show that F is also a (kn, ε, r, w)-set with respect to Φ and f . For
any x, y ∈ F we have

max
0≤i≤kn−1

d(f i(x), f i(y)) ≥ max
0≤j≤n−1

d(f jk(x), f jk(y)) > ε.

Moreover,
1

kn
Skn(Φ, f)(x) =

1

n
Sn(Φk, f

k)(x) ∈ B(r, w).

Since every (n, ε, r, w)-set with respect to Φk and fk is a (kn, ε, r, w)-set
with respect to Φ and f , we obtain

cardFn(ε, r, w, fk,Φk) ≤ cardFkn(ε, r, w, f,Φ).

Therefore,

1

n
log cardFn(ε, r, w, fk,Φk) ≤ k ·

1

kn
log cardFkn(ε, r, w, f,Φ).

Passing to the upper limit as n → ∞ and to the limit as ε → 0 we obtain
h(r, w, fk,Φk) ≤ kh(r, w, f,Φ).

To prove the opposite inequality we fix an ε > 0 and n ∈ N and let
F be any (kn, ε, r, w)-set with respect to Φ and f . We use the uniform
continuity of f on X to find a 0 < δ < ε such that for i = 0, ..., k we
have d(f i(x), f i(y)) < ε

2 whenever d(x, y) < δ. Denote be Fn any maximal

(n, δ, r, w)-set with respect to Φk and fk. If x ∈ F then 1
nSn(fk,Φk)(x) ∈

B(w, r) by Lemma 1. The maximality of Fn implies the existence of yx ∈ Fn
such that

max
0≤j≤n−1

d(f jk(x), f jk(yx)) < δ.

Then d(f i(x), f i(yx)) < ε
2 for all 0 ≤ i ≤ kn−1. The map x ∈ F 7→ yx ∈ Fn

is injective. Indeed, if for some x1, x2 ∈ F we have yx1 = yx2 then the
triangle inequality yields

max
0≤i≤kn−1

d(f i(x1), f i(x2)) < ε.

This contradicts the fact that F is (kn, ε)-separated. Therefore, cardF ≤
cardFn. Since F was arbitrary (kn, ε, r, w)-set with respect to Φ and f , we
obtain

k · 1

kn
log cardFkn(ε, r, w, f,Φ) ≤ 1

n
log cardFn(δ, r, w, fk,Φk).

Letting n→∞ and ε→ 0 we obtain the desired inequality. �

Remark. The consequence of this lemma is an analog of the power rule for
classical entropy htop(w, fk,Φk) = k · htop(w, f,Φ).

Before formulating the next lemma we recall the standard definition of
the entropy of a measure µ ∈ M(f). Let A = {A1, A2, ..., Ak} be a finite
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partition of X. Then the entropy of the partition A is

Hµ(A) = −
k∑
i=1

µ(Ai) logµ(Ai).

Note that the convexity of the function x 7→ x log x implies Hµ(A) ≤
log card (A).

The join of the partitions f−j(A) = {f−j(A1), ..., f−j(Ak)} is the parti-

tion An =
∨n−1
j=0 f

−j(A), which consists of all sets of the form ∩n−1
j=0 f

−j(Aij )
with Aij ∈ A. The entropy of f with respect to A is

hµ(f,A) = lim
n→∞

1

n
Hµ(An)

Finally, the entropy of the measure µ with respect to f is

hµ(f) = sup{hµ(f,A) : A is a finite partition of X}

Lemma 3. Let f : X → X be a continuous map on a compact metric space,
Φ : X → Rm be a continuous potential, w ∈ Rot(Φ) and r > 0. Suppose
that µ ∈ M(f) is such that rvΦ(µ) ∈ B(r, w) and for µ-almost all x ∈ X
limn→∞

1
nSn(f,Φ)(x) = rvΦ(µ). Then

hµ(f) ≤ h(r, w, f,Φ) + log 2 + 1.

Proof. Let A = {A1, A2, ..., Ak} be any Borel partition of X. Choose
ε > 0 such that ε < 1

k log k . Since the sequence 1
nSn(f,Φ) converges µ-

almost everywhere to rvΦ(µ), we use Egoroff’s theorem to find subsets
Di ⊂ Ai, (i = 1, ..., k) with the following properties

• Di is compact
• µ(Ai \Di) < ε
• 1

nSn(f,Φ)→ rvΦ(µ) uniformly on Di

Let D0 = X \ ∪ki=1Di. Then D = {D0, D1, ..., Dk} is also a partition of X.
Denote by rµ = r − ‖rvΦ(µ)− w‖ and by

l = 4

⌈
sup{‖Φ(x)‖ : x ∈ X}

rµ

⌉
.

We consider the join of the partitions

Dln =

ln−1∨
j=0

f−j(D).

We split Dln into ”good sets” Gn and ”bad sets” Bni , (i = 0, ..., l− 1) in the
following way.

Bn0 = D0 ∩ f−1(D0) ∩ ... ∩ f−ln+1(D0)

Bni = {D ∈ Dln \ ∪i−1
j=0B

n
j : D ⊂ D0 ∩ f−1(D0) ∩ ... ∩ f−(l−i)n+1(D0)}
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Then Gn = Dln \ ∪l−1
i=0Bni . We also denote by

En =

{
x ∈ X :

1

m
Sm(f,Φ) ∈ B(r, w) for anym > ln

}
Since 1

nSn(f,Φ) converges uniformly on Di (i 6= 0) to the rotation vector

of µ, there is Nµ > 0 such that for any n > Nµ and any x ∈ ∪ki=1Di we have∥∥∥∥ 1

n
Sn(f,Φ)(x)− rvΦ(µ)

∥∥∥∥ < rµ
2
.

From now on we will consider n > Nµ.
First we will show that for such n any set G ∈ Gn is a subset of En. Pick

any x ∈ G. Then there is s < n such that fs(x) ∈ Di for some i 6= 0. Then
for any m > ln we have∥∥∥∥ 1

m
Sm(f,Φ)(x)− w

∥∥∥∥ ≤∥∥∥∥ 1

m
Sm(f,Φ)(x)− 1

m
Sm(f,Φ)(fs(x))

∥∥∥∥
+

∥∥∥∥ 1

m
Sm(f,Φ)(fs(x))− w

∥∥∥∥
To estimate the first term we note that

‖Sm(f,Φ)(x)− Sm(f,Φ)(fs(x))‖ ≤ ‖Φ(x)‖+ ‖Φ(f(x))‖+ · · ·+ ‖Φ(fs−1(x))‖
+ ‖Φ(fm(x))‖+ · · ·+ ‖Φ(fm+s−1(x))‖
≤ 2s · sup{‖Φ(x)‖ : x ∈ X}

≤ 2s · lrµ
4

≤ lnrµ
2

To estimate the second term we use the fact that fs(x) ∈ ∪ki=1Di and
m > Nµ implies 1

mSm(f,Φ)(fs(x)) ∈ B(
rµ
2 , rvΦ(µ)). Therefore,∥∥∥∥ 1

m
Sm(f,Φ)(f s(x))− w

∥∥∥∥ ≤ rµ
2

+ ‖w − rvΦ(µ)‖

Combining these two estimates we obtain∥∥∥∥ 1

m
Sm(f,Φ)(x)− w

∥∥∥∥ ≤ 1

m
· lnrµ

2
+
rµ
2

+ ‖w − rvΦ(µ)‖

< rµ + ‖w − rvΦ(µ)‖
≤ r

Therefore, x ∈ En.
Now we will show that the cardinality of Gn is comparable to the cardi-

nality of Dnl. If a set B ∈ Bni , (0 < i ≤ l) then

B = D0 ∩ f−1(D0)∩ ...∩ f−(l−i)n+1(D0)∩ f−(l−i)n(Dj0)∩ ...∩ f−ln+1(Djin)

If B is not empty then the set Dj0 ∩ ... ∩ f−in+1(Djin) is also not empty.
Moreover, different sets B ∈ Bni correspond to different sets of the form
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above. By construction of Bni there is a set G in Gn such that G ⊂ Dj0 ∩
... ∩ f−in+1(Djin). Therefore,

cardGn ≥ max
0≤i≤l

{Bni }

Since the families Bni are disjoint and Dln = ∪li=0Bni ∪ Gn, we obtain

cardDln ≤ (l + 2)cardGn (4)

Consider

C = {D0 ∪D1, D0 ∪D2, ..., D0 ∪Dk}.
Since the sets Di (1 ≤ i ≤ k) are compact, C is an open cover of X. We

denote by Cn a subfamily of the join
∨ln−1
j=0 f−j(C) which covers En and has

minimal cardinality. Next we will show that

cardGn ≤ 2lncard Cn (5)

Let G ∈ Gn,

G = Di1 ∩ f−1(Di2) ∩ ... ∩ f−ln+1(Diln).

Then G ⊂ En and thus there is a set C ∈ Cn such that G ∩C 6= ∅. The set
C is of the form

C = (D0 ∪Dj1) ∩ f−1(D0 ∪Dj2) ∩ ... ∩ f−ln+1(D0 ∪Djln).

Since C∩G is not empty, for s = 1, ..., ln we must have Dis∩(D0∪Djs) 6= ∅.

Since the sets {Di}ki=0 form a partition of X, either is = 0 or is = js. Also,
in this case G ⊂ C. This implies that any set in Gn is a subset of some set
C ∈ Cn. Moreover, each set in Cn can contain at most 2ln sets from Gn. We
conclude that cardGn ≤ 2lncard Cn.

Let δ be a Lebesque number of the cover C, that is any subset of X of
diameter less than or equal to δ lies in some member of C. Then δ is also a

Lebesque number of the cover
∨ln−1
j=0 f−j(C) in the dn-metric. Since Cn is a

minimal cover of En, every set C ∈ Cn contains a point xC ∈ En which is
not in any other element of Cn. Then the ball in the dln-metric centered at
xC of diameter δ is contained in C. Therefore, points {xC : C ∈ Cn} form a
(δ/2, ln)-separated set of En.

Recall that Fln(δ/2, w, r) denotes the maximal (δ/2, ln)-separated set
with the property that 1

lnSln(f,Φ)(x) ∈ B(r, w) for any x ∈ Fln(δ/2, w, r).
We see that

card Cn = card {xC : C ∈ Cn} ≤ cardFln(δ/2, w, r) (6)

Combining this last inequality with (4) and (5) we obtain

cardDln ≤ (l + 2)cardGn

≤ 2ln(l + 2)card Cn
≤ 2ln(l + 2)cardFln(δ/2, w, r)
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Using the fact that Hµ(Dln) ≤ log cardDln we estimate

hµ(f,D) = lim
n→∞

1

ln
Hµ(Dln)

≤ lim
n→∞

1

ln
(ln log 2 + log(l + 2) + log cardFln(δ/2, w, r))

≤ log 2 + lim
n→∞

1

ln
log cardFln(δ/2, w, r)

We let δ → 0 in the last inequality and obtain

hµ(f,D) ≤ log 2 + h(r, w, f,Φ).

Now it is left to compare hµ(f,A) and hµ(f,D). It is a standard argument
to show that hµ(f,A) ≤ hµ(f,D) + 1 (see [16] or [13]). We will outline it
here for the sake of completeness. We have ([16, Th 4.12])

hµ(f,A) ≤ hµ(f,D) +Hµ(A|D),

where Hµ(A|D) is the conditional entropy of A given D defined by

Hµ(A|D) = −
k∑
i=0

k∑
j=1

µ(Di)
µ(Di ∩Aj)
µ(Di)

log
µ(Di ∩Aj)
µ(Di)

Since for i 6= 0 either µ(Di ∩Aj) = 1 (when j = i) or µ(Di ∩Aj) = 0 (when
j 6= i), we get

Hµ(A|D) = µ(D0)

− k∑
j=1

µ(D0 ∩Aj)
µ(D0)

log
µ(D0 ∩Aj)
µ(D0)


The expression in the brackets above is the entropy of the cover A restricted
to the set D0, and thus it is bounded by the log cardA = log k. Therefore,
Hµ(A|D) ≤ µ(D0) log k ≤ kε log k ≤ 1.

We arrive at the inequality hµ(f,A) ≤ 1 + log 2 + h(r, w, f,Φ). Since
A was an arbitrarily chosen Borel partition we obtain hµ(f) ≤ 1 + log 2 +
h(r, w, f,Φ). �

Now we are ready to prove the main theorem.

Proof of Theorem 1. Since hm(w, f,Φ) is approximated by ergodic measures,
for any ε > 0 and r > 0 there is an ergodic measure µ = µ(ε, r) such that
rvΦ(µ) ∈ B(r, w) and |hµ(f)− hm(w, f,Φ)| < ε. Since µ is ergodic, we can
apply Lemma 3 and obtain

hµ(f) ≤ 1 + log 2 + h(r, w, f,Φ).

Fix any k ∈ N. As before, denote Φk = 1
kSk(f,Φ). Then rvΦk(µ) =

rvΦ(µ) and by Lemma 1 we have

1

n
Sn(fk,Φk)(x) =

1

kn
Skn(f,Φ)(x)→ rvΦk(µ) for µ-almost all x.
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Therefore, measure µ satisfies the assumptions of Lemma 3 for the maps fk

and Φk. We obtain

hµ(fk) ≤ 1 + log 2 + h(r, w, fk,Φk)

Application of the power rule for measure-theoretic entropy of µ on the
left-hand side and Lemma 2 on the right gives

khµ(f) ≤ 1 + log 2 + kh(r, w, f,Φ)

Since k ∈ N was arbitrary, we obtain hµ(f) ≤ h(r, w, f,Φ). By the choice of
measure µ we have hm(w, f,Φ) − ε ≤ h(r, w, f,Φ). Finally, letting ε and r
approach 0 we obtain the desired inequality

hm(w, f,Φ) ≤ htop(w, f,Φ).

This completes the proof of the theorem. �
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